How can i evaluate my network performance as i have trained my model?
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Machine Learning Enthusiast
le 18 Fév 2017
Modifié(e) : Machine Learning Enthusiast
le 20 Fév 2017
I have trained my model with 100% accuracy,but i want to evaluate my trained work from test data set or unseen data.what should i add in my code for testing purpose? i-e to test validation data and test data
p = u; %inputs
t = f; %targets
[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
%net = newff(p,t,10,10{},'trainlm');
net=newff(minmax(pn),[30,25,16],{'tansig','tansig','purelin'},'trainscg');
%net = init(net);
% net.IW{1,1}=wts0;
% net.b{1}=bias0;
net.trainParam.show =2;
net.trainParam.epochs =5000;
net.trainParam.goal =1e-7;
%net.trainParam.mc=0.95;
net.trainParam.lr=0.2;
[net,tr] = train(net,pn,tn);
ANN = sim(net,pn);
output1= mapminmax('reverse',ANN,ts);
wts1=net.IW{1,1};
bias1=net.b{1};
0 commentaires
Réponse acceptée
Walter Roberson
le 18 Fév 2017
7 commentaires
Walter Roberson
le 18 Fév 2017
The code for that example does not create a network named "net". Are you trying to apply that to deepnet just before
% Train the deep network on the wine data.
?
Machine Learning Enthusiast
le 20 Fév 2017
Modifié(e) : Machine Learning Enthusiast
le 20 Fév 2017
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!