second order finite difference scheme

6 vues (au cours des 30 derniers jours)
Margaret Winding
Margaret Winding le 21 Fév 2017
Commenté : Rena Berman le 14 Mai 2020
I am given data t=[0 1 2 3 4 5] and y(t)=[1 2.7 5.8 6.6 7.5 9.9] and have to evaluate the derivative of y at each given t value using the following finite difference schemes.
(y(t+h)y(th))/2h =y(t)+O(h^2)
(y(t+2h)+4y(t+h)3y(t))/2h =y(t)+O(h^2)
(y(t2h)4y(th)+3y(t))/2h =y(t)+O(h^2)
I started the code, but I haven't learned what to do in the second order case. This what I have so far for the first given equation:
t= 0: 1: 5;
y(t)= [1 2.7 5.8 6.6 7.5 9.9];
n=length(y);
dfdx=zeros(n,1);
dfdx(t)=(y(2)-y(1))/(t(2)-t(1));
for i=2:n-1
dfdx(1)=(y(i+1)-y(i-1))/(t(i+1)-t(i-1));
end
dfdx(n)=(y(n)-y(n-1))/(t(n)-t(n-1));
the error that returns is "Subscript indices must either be real positive integers or logicals." referencing my use of y(t). How do I fix this to make my code correct?
  1 commentaire
Rena Berman
Rena Berman le 14 Mai 2020
(Answers Dev) Restored edit

Connectez-vous pour commenter.

Réponse acceptée

Chad Greene
Chad Greene le 21 Fév 2017
There's no need for the (t) when you define y(t). Same with dfdx. Also, make sure you change dfdx(1) in the loop to dfdx(i).
t= 0: 1: 5;
y= [1 2.7 5.8 6.6 7.5 9.9];
n=length(y);
dfdx=zeros(n,1);
dfdx=(y(2)-y(1))/(t(2)-t(1));
for i=2:n-1
dfdx(i)=(y(i+1)-y(i-1))/(t(i+1)-t(i-1));
end
dfdx(n)=(y(n)-y(n-1))/(t(n)-t(n-1));
  6 commentaires
Margaret Winding
Margaret Winding le 23 Fév 2017
Chad and Torsten,
Thank you so much for your help! I was able to get the correct answer :)
alburary daniel
alburary daniel le 3 Août 2018
and how will be the code for using a 4-point first derivative?

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Scope Variables and Generate Names dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by