second order finite difference scheme
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Margaret Winding
le 21 Fév 2017
Commenté : Rena Berman
le 14 Mai 2020
I am given data t=[0 1 2 3 4 5] and y(t)=[1 2.7 5.8 6.6 7.5 9.9] and have to evaluate the derivative of y at each given t value using the following finite difference schemes.
(y(t+h)−y(t−h))/2h =y′(t)+O(h^2)
(−y(t+2h)+4y(t+h)−3y(t))/2h =y′(t)+O(h^2)
(y(t−2h)−4y(t−h)+3y(t))/2h =y′(t)+O(h^2)
I started the code, but I haven't learned what to do in the second order case. This what I have so far for the first given equation:
t= 0: 1: 5;
y(t)= [1 2.7 5.8 6.6 7.5 9.9];
n=length(y);
dfdx=zeros(n,1);
dfdx(t)=(y(2)-y(1))/(t(2)-t(1));
for i=2:n-1
dfdx(1)=(y(i+1)-y(i-1))/(t(i+1)-t(i-1));
end
dfdx(n)=(y(n)-y(n-1))/(t(n)-t(n-1));
the error that returns is "Subscript indices must either be real positive integers or logicals." referencing my use of y(t). How do I fix this to make my code correct?
Réponse acceptée
Chad Greene
le 21 Fév 2017
There's no need for the (t) when you define y(t). Same with dfdx. Also, make sure you change dfdx(1) in the loop to dfdx(i).
t= 0: 1: 5;
y= [1 2.7 5.8 6.6 7.5 9.9];
n=length(y);
dfdx=zeros(n,1);
dfdx=(y(2)-y(1))/(t(2)-t(1));
for i=2:n-1
dfdx(i)=(y(i+1)-y(i-1))/(t(i+1)-t(i-1));
end
dfdx(n)=(y(n)-y(n-1))/(t(n)-t(n-1));
6 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Scope Variables and Generate Names dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!