Hi, I am finding area enclosed by convex hull using delayunayt​​riangulat​i​on,,,i have pasted the code...I just need someone to tell me..the area i got is right according to my code?

2 vues (au cours des 30 derniers jours)
theta1=[88,89,90,91,92,94,96,94,90,89,-100,-102,-104,-105,-104,-102,-101,-100];
radius1=[5,7,11,17,26,39,46,44,32,3,0,18,34,32,33,29,28,20];
%subplot(211)
theta_rad=theta1*pi/180;
polar(theta_rad, radius1, 'b*');
hold on;
[x, y] = pol2cart(theta_rad, radius1);
k = convhull(x, y);
xch = x(k);
ych = y(k);
[thetaCH1, rhoCH1] = cart2pol(xch, ych);
%subplot(212)
polar(thetaCH1, rhoCH1, 'ro-');
DT = delaunayTriangulation(theta_rad(:),radius1(:));
[U,v]=convexHull(DT);
i got v=130.8648.... is it the right way to do it ?

Réponse acceptée

John D'Errico
John D'Errico le 20 Mar 2017
NO. You cannot compute a convex hull of your points when they are represented in polar coordinates!!!!! If you did, the result will be nonsensical. And the area it would compute will certainly be nonsense.
Instead, convert the polar coordinates to cartesian coordinates, then compute the area of the convex hull in Cartesian coordiantes:
DT = delaunayTriangulation(x(:),y(:));
[H,A] = convexHull(DT);
A =
390.270316856299
  8 commentaires
Image Analyst
Image Analyst le 21 Mar 2017
Another quirk of polyarea is that if the perimeter overlaps, you can have a negative area there. For example, the area of a perfect bowtie shape is zero according to polyarea.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Bounding Regions dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by