How to plot performance graph after CNN training

3 vues (au cours des 30 derniers jours)
Satyabrata Nath
Satyabrata Nath le 23 Mar 2017
I am new in deep learning and unable to plot performance graph after training my CNN architecture . My code is as follows :-
opts = trainingOptions('sgdm',
'Momentum', 0.9,
'InitialLearnRate', 0.001,
'LearnRateSchedule', 'piecewise',
'LearnRateDropFactor', 0.1,
'LearnRateDropPeriod', 8,
'L2Regularization', 0.004,
'MaxEpochs', 40,
'MiniBatchSize', 128,
'Verbose', true);
cifar10Net = trainNetwork(trainingImages, trainingLabels, layers, opts);
YTest = classify(cifar10Net, testImages);
accuracy = sum(YTest == testLabels)/numel(testLabels)

Réponses (1)

Parag
Parag le 7 Mar 2025
Hi, the current code does not include instructions to plot the performance graph (training progress, accuracy, loss, etc.). However, MATLAB automatically displays the training progress plot by default when using the "trainingOptions" function with the "Plots" property set to "training-progress."
Modify the trainingOptions to include the Plots parameter:
Please refer to MATLAB code for the same
opts = trainingOptions('sgdm', ...
'Momentum', 0.9, ...
'InitialLearnRate', 0.001, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.1, ...
'LearnRateDropPeriod', 8, ...
'L2Regularization', 0.004, ...
'MaxEpochs', 40, ...
'MiniBatchSize', 128, ...
'Verbose', true, ...
'Plots', 'training-progress'); % Enable performance graph
This will display a real-time training progress plot, including accuracy, loss, and learning rate changes during training.

Catégories

En savoir plus sur Recognition, Object Detection, and Semantic Segmentation dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by