How to match output size in cnn

3 vues (au cours des 30 derniers jours)
Hugo Brandão
Hugo Brandão le 25 Mar 2017
Commenté : Kanushka Gajjar le 24 Juin 2019
I am trying to train a cnn to take as input a grayscale image (25x25) and output also an image (25x25). I have created the training as follows: (I1 is the input and I2 is the response)
[I1, I2] = generateImage();
X(:,:,:,i) = I1;
Y(i,:,:,:) = I2;
The I set the network and try to train it:
%create network layers
layers = [...
imageInputLayer([25 25 1])
convolution2dLayer([4 3],12)
reluLayer
crossChannelNormalizationLayer(4)
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(5,16)
reluLayer
crossChannelNormalizationLayer(4)
maxPooling2dLayer(2,'Stride',2)
fullyConnectedLayer(256)
reluLayer
fullyConnectedLayer(10)
regressionLayer];
%create training option
options = trainingOptions('sgdm','InitialLearnRate',0.001, ...
'MaxEpochs',15);
%create network
net = trainNetwork(X,Y,layers,options)
The message I get is:
Error using trainNetwork (line 92)
The output size [1 1 10] of the last layer doesn't match the response size [1 25 25].
Any ideias on to fix this?
  1 commentaire
Kanushka Gajjar
Kanushka Gajjar le 24 Juin 2019
Hi,
Did you find a solution to this problem?
I am having the same problem.
Thanks,
Kanushka

Connectez-vous pour commenter.

Réponses (1)

Abel Babu
Abel Babu le 28 Mar 2017
This error is due to the ' fullyConnectedLayer'. If you see the following documentation it is clear that the output of this layer is a single dimension vector
The workaround is to unroll your input image matrix to make it single dimension vector and then training it. I have modified your code by taking random matrices as inputs and response.
layers = [...
imageInputLayer([25 25 1])
convolution2dLayer([4 3],12)
reluLayer
crossChannelNormalizationLayer(4)
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(5,16)
reluLayer
crossChannelNormalizationLayer(4)
maxPooling2dLayer(2,'Stride',2)
fullyConnectedLayer(256)
reluLayer
fullyConnectedLayer(25*25)%Change the dimensions to match the outputs.
regressionLayer;
];
%create training option
options = trainingOptions('sgdm','InitialLearnRate',0.001, ...
'MaxEpochs',15);
%create network
X(:,:,:,1) = rand(25);
Y=randn(1,1,25*25,1);
net = trainNetwork(X,Y,layers,options)
I hope the above code will help you.
Regards,
Darshan Bhat
  1 commentaire
Osama Tabbakh
Osama Tabbakh le 11 Avr 2019
Modifié(e) : Osama Tabbakh le 14 Mai 2019
I wounder why u put two fullyConnectedLayers. And can I somehow filter the output also?

Connectez-vous pour commenter.

Catégories

En savoir plus sur Image Data Workflows dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by