How to implement nguyen widrow weight initialization ?

4 vues (au cours des 30 derniers jours)
crixus
crixus le 4 Avr 2017
Commenté : crixus le 18 Mai 2018
Hi, I'm interested to use nguyen widrow weight initialization but i do not want to use the existing matlab function. I have the pseudo code and I want to try coding it myself. One thing I'm not sure on is how the technique calculate the norm of weights ? suppose I have input weights of [5x3] do i calculate the norm of entire matrix or column ? Thanks in advance

Réponses (2)

Ênio Viana
Ênio Viana le 18 Mai 2018
I want to know this too. Thanks in advance

Ênio Viana
Ênio Viana le 18 Mai 2018
In this link you can see a Matlab code implementation Stack Overflow but I didn't test this. See that code...
a = -1;
b = 1;
% WIDROW weights for Layer Input to Hidden Layer 1
sum_sq_wts = 0;
for k=1:30
iw(:,:) = zeros(num_input, nodes_hidden_layer);
for i=1:num_input
for j=1:nodes_hidden_layer
iw(i,j)=(b-a)*rand(1,1) + a;
sum_sq_wts = sum_sq_wts + (iw(i,j)*iw(i,j));
end
end
norm = sqrt(sum_sq_wts);
beta = 0.7*nodes_hidden_layer.^(1/num_input);
for i=1:num_input
for j=1:nodes_hidden_layer
iw(i,j) = beta*iw(i,j)/norm;
end
end
IW{k}=iw';
end
% WIDROW weights for Hidden Layer 1 to output Layer
sum_sq_wts = 0;
for k=1:30
lw(:,:) = zeros(nodes_hidden_layer,1);
for i=1:nodes_hidden_layer
for j=1:1
iw(i,j)=(b-a)*rand(1,1) + a;
sum_sq_wts = sum_sq_wts + iw(i,j)*iw(i,j);
end
end
norm = sqrt(sum_sq_wts);
beta = 0.7*nodes_hidden_layer.^(1/num_input);
for i=1:nodes_hidden_layer
for j=1:1
lw(i,j) = beta*lw(i,j)/norm;
end
end
LW{k}=lw';
end
WidNgu{1,1} = IW;
WidNgu{1,2} = LW;
  1 commentaire
crixus
crixus le 18 Mai 2018
not sure if it's like this
InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1; beta = 0.7*(NumberofHiddenNeurons^(1/NumberofInputNeurons)); InputWeight = InputWeight/norm(InputWeight) * beta;
xmin=min(min(InputWeight)); xmax=max(max(InputWeight)); BiasofHiddenNeurons=xmin+rand(NumberofHiddenNeurons,1)*(xmax-xmin);

Connectez-vous pour commenter.

Catégories

En savoir plus sur Quantum Mechanics dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by