Calculate length of a curve in 3d

4 vues (au cours des 30 derniers jours)
Ema
Ema le 10 Avr 2017
Commenté : Torsten le 11 Avr 2017
Ive ploted a rising spiral with the following code.
clear all
syms t real
ezplot3((sqrt(9)).*cos(9./2.*t), (sqrt(16)).*sin(9./2.*t),t./pi.*(9./2) ,'animate')
But i have a hard time trying to calculate the length of the curve up to z = 9. I know that i 2d i use the formula int(sqrt(1+(dx/dy)^2)) But how do i do this in 3d? What code do i use?
  1 commentaire
Ema
Ema le 10 Avr 2017
According to http://tutorial.math.lamar.edu/Classes/CalcIII/VectorArcLength.aspx i could use the formula int(sqrt x'^2+y'^2+z'^2, t , 0 , 2*pi) In other words , integral of the addition for the derivatives of x,y,z raised with the power of two.
But i get the following answer : "int((324*cos((9*t)/2)^2 + (729*sin((9*t)/2)^2)/4 + 81/(4*pi^2))^(1/2), t, 0, 2*pi)" that doesnt make sense. Shouldnt the t be calculated from 0 to 2pi?

Connectez-vous pour commenter.

Réponses (1)

Torsten
Torsten le 10 Avr 2017
  2 commentaires
Ema
Ema le 10 Avr 2017
Ive tried it but dont get it solved. According to your site i could use the formula int(sqrt x'^2+y'^2+z'^2, t , 0 , 2*pi) In other words , integral of the addition for the derivatives of x,y,z raised with the power of two.
But i get the following answer : "int((324*cos((9*t)/2)^2 + (729*sin((9*t)/2)^2)/4 + 81/(4*pi^2))^(1/2), t, 0, 2*pi)" that doesnt make sense. Shouldnt the t be calculated from 0 to 2pi?
Torsten
Torsten le 11 Avr 2017
f=@(t)sqrt((sqrt(9)*9/2*sin(9/2*t)).^2+(sqrt(16)*9/2*cos(9/2*t)).^2+(1/pi*9/2)^2);
value=integral(f,0,2*pi);
Best wishes
Torsten.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by