system of equations with nonlinear constraint

1 vue (au cours des 30 derniers jours)
Mohammadfarid ghasemi
Mohammadfarid ghasemi le 19 Avr 2017
Commenté : Torsten le 19 Avr 2017
Hi, I have a system of three linear equations and three unknowns as below:
x(1).*(A11-B)+x(2).*A12+x(3).*A13=0
x(1).*A12 +x(2).*(A22-B)+x(3).*A23=0
x(1).*A13 +x(3).*(A33-B)+x(2).*A23=0
applying the fsolve yields the obvious answer of [0 0 0], Therefore, I have to define the following nonlinear and linear constraints:
x(1)^2+x(2)^2+x(3)^2=1.0 & -1<=x(1),x(2),x(3)<=1
I'm familiar with fmincon but it is applicable for scalar functions when one wants to find min f(x). I wonder how can I solve the aforementioned problem? Thank you so much for your time and attention.
  2 commentaires
Torsten
Torsten le 19 Avr 2017
A11,A12,A13,A22,A23,A33,B are given constants ?
Best wishes
Torsten.
Mohammadfarid ghasemi
Mohammadfarid ghasemi le 19 Avr 2017
Yes, x is the 3*1 array of unknowns and the A11,A12,A13,A22,A23,A33,B are the known scalars.
Regards,
Farid

Connectez-vous pour commenter.

Réponse acceptée

Torsten
Torsten le 19 Avr 2017
Modifié(e) : Torsten le 19 Avr 2017
Then x is a normalized eigenvector to the minimum eigenvalue of the matrix
M=A*transpose(A)
where
A=[A11-B A12 A13;A12 A22-B A23;A13 A23 A33-B]
help eig
Best wishes
Torsten.
  3 commentaires
Mohammadfarid ghasemi
Mohammadfarid ghasemi le 19 Avr 2017
understood, Thank you so much.
Regards,
Farid.
Torsten
Torsten le 19 Avr 2017
Take a look at this thread:
https://de.mathworks.com/matlabcentral/answers/328754-rotation-that-maximises-a-vector-length
You search for a vector "that minimizes a vector length".
Best wishes
Torsten.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Nonlinear Optimization dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by