How can I solve A*X + X*B = C equation for X? where A, B&C are 2*2 matrixes.
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
HEmant kuralkar
le 1 Juin 2017
Réponse apportée : Karan Gill
le 5 Juin 2017
A = [1 1;2 3] B= [5 6;7 8] C = [11 12;13 14] Syms X; Eqn = A*X + X*B == C; solve(Eqn,X); % I'm facing difficulties to define matrix X as syms
0 commentaires
Réponse acceptée
Plus de réponses (2)
Andrei Bobrov
le 1 Juin 2017
>> A = [1 1;2 3];
B= [5 6;7 8];
C = [11 12;13 14];
X = reshape(sym('x',[4,1],'real'),2,[]);
v = A*X + X*B - C;
v = v(:);
f = matlabFunction(v,'Vars',{X});
x = fsolve(f,[1;1;1;1])
Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
x =
2.1809
-0.1489
-0.2766
1.4043
>> X = reshape(x,2,[]);
>> v = A*X + X*B - C
v =
1.0e-14 *
-0.3553 -0.3553
-0.1776 -0.5329
>>
5 commentaires
Andrei Bobrov
le 1 Juin 2017
Modifié(e) : Andrei Bobrov
le 1 Juin 2017
Same
>> A = [1 1;2 3] ;
B= [5 6;7 8] ;
C = [11 12;13 14] ;
syms x1 y1 x2 y2
X = [x1 y1 ; x2 y2] ;
eqn = A*X+X*B == C ;
D = solve(eqn);
X = reshape(sym('x',[4,1],'real'),2,[]);
v = A*X + X*B - C;
v = v(:);
f = matlabFunction(v,'Vars',{X});
x = fsolve(f,[1;1;1;1]);
Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
>> structfun(@double,D) - x
ans =
1.0e-14 *
0.6217
-0.4469
-0.4219
0.3775
>>
Karan Gill
le 5 Juin 2017
You can solve this with the symbolic toolbox if you declare "X" as a matrix:
>> X = sym('x%d',[2 2])
X =
[ x11, x12]
[ x21, x22]
Then solve as usual:
>> A = [1 1;2 3];
B= [5 6;7 8];
C = [11 12;13 14];
>> eqn = A*X + X*B == C
eqn =
[ 6*x11 + 7*x12 + x21 == 11, 6*x11 + 9*x12 + x22 == 12]
[ 2*x11 + 8*x21 + 7*x22 == 13, 2*x12 + 6*x21 + 11*x22 == 14]
>> sol = solve(eqn,X)
sol =
struct with fields:
x11: [1×1 sym]
x21: [1×1 sym]
x12: [1×1 sym]
x22: [1×1 sym]
>> solX = [sol.x11 sol.x12; sol.x21 sol.x22]
solX =
[ 205/94, -13/47]
[ -7/47, 66/47]
>> vpa(solX)
ans =
[ 2.1808510638297872340425531914894, -0.27659574468085106382978723404255]
[ -0.1489361702127659574468085106383, 1.4042553191489361702127659574468]
0 commentaires
Voir également
Catégories
En savoir plus sur Systems of Nonlinear Equations dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!