How to i find the integral/derivative of a transfer function ?

34 vues (au cours des 30 derniers jours)
Rakshith BV
Rakshith BV le 4 Juin 2017
Commenté : Walter Roberson le 15 Mar 2025
have a transfer function, how to get its integral?

Réponse acceptée

Sebastian Castro
Sebastian Castro le 4 Juin 2017
Modifié(e) : Sebastian Castro le 4 Juin 2017
Are you using Control System Toolbox? Recall that the transfer function for a derivative is s and for an integrator is 1/s. So, for example:
>> G = tf(1,[1 5 10])
>> s = tf('s')
Then
>> G_deriv = G*s;
>> G_int = G*(1/s);
If you're using discrete, you can similarly do this with z = tf('z');
- Sebastian
  4 commentaires
Karl Magro
Karl Magro le 14 Mar 2018
So lets say you have the following trasnfer function:
(1.417s+37.83)/(s^2+1.417s+37.83)
The first derivative of it would be: (1.417s^2+37.83s)/(s^2+1.417s+37.83)
Is that correct Sebastian?
Dhanush D Shekar
Dhanush D Shekar le 26 Oct 2020
sebastian is talkin about taking the derivative in time domain

Connectez-vous pour commenter.

Plus de réponses (1)

Drew
Drew le 15 Mar 2025
  2 commentaires
Walter Roberson
Walter Roberson le 15 Mar 2025
I do not understand this answer to the question about taking integrals and derivatives of transfer functions.
For one thing, the integral involves the variable t but transfer functions tradtionally use s or z . Using the variable t makes it appear as if this is an integral in the time domain, in which case it is not a transfer function.
Walter Roberson
Walter Roberson le 15 Mar 2025
syms t y(x)
eqn = diff(y,x) * int(sin(t^2), t, sqrt(x), sym(pi)/4)
eqn(x) = 
char(eqn)
ans = '-(2^(1/2)*pi^(1/2)*(fresnels((2^(1/2)*x^(1/2))/pi^(1/2)) - fresnels((2^(1/2)*pi^(1/2))/4))*diff(y(x), x))/2'

Connectez-vous pour commenter.

Catégories

En savoir plus sur Dynamic System Models dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by