Self-Organising Map (SOM) with Principle Component Analysis (PCA)
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
naghmeh moradpoor
le 19 Juin 2017
Réponse apportée : Greg Heath
le 22 Juin 2017
Dear all, I want to use Self-Organising Map (SOM) [unsupervised machine learning] for my anomaly detection problem. But before that I would like to find suitable input features that cause the best results. I have total of eight input features. Would you use Principle Component Analysis (PCA) to find best features? What would you do? Regards, Naghmeh
0 commentaires
Réponse acceptée
Greg Heath
le 22 Juin 2017
It is not clear if you have a well defined output.
If so, it IS NOT the variation of the inputs that are paramount.
It IS the variation of the outputs w.r.t. the inputs.
Check out principal COORDINATE analysis (very different from principal COMPONENT analysis!)
Hope that helps.
Thank you for formally accepting my answer
Greg
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!