How to transpose a matrix
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Matrix A as follows:
A = [1 8
1 5
1 4
2 6
2 7
2 2
2 5
7 6
7 4
7 8
9 9
9 1
9 2
9 6
9 2
];
I want to transpose matrix A based on the unique ID in the first column. Add 0 at the end wherever its needed in order to keep matrix dimension consistent.
out = [1 8 5 4 0 0
2 6 7 2 5 0
7 6 4 8 0 0
9 9 1 2 6 2
];
1 commentaire
Jan
le 27 Juin 2017
The procedure is not explained uniquely. Surely this is not a transposing. With some guessing a method can be invented, but it would be safer, if you explain it clearly.
Réponses (2)
JESUS DAVID ARIZA ROYETH
le 27 Juin 2017
you can use this:
A = [1 8
1 5
1 4
2 6
2 7
2 2
2 5
7 6
7 4
7 8
9 9
9 1
9 2
9 6
9 2
];
s=unique(A(:,1));
[~,v]=mode(A(:,1));
out=zeros(length(s),v+1);
for k=1:length(s)
value=[s(k) A(A(:,1)==s(k),2)'];
out(k,:)=[value zeros(1,v+1-length(value))];
end
0 commentaires
Jan
le 27 Juin 2017
Modifié(e) : Jan
le 27 Juin 2017
With some guessing:
A = [1 8; ...
1 5; ...
1 4; ...
2 6; ...
2 7; ...
2 2; ...
2 5; ...
7 6; ...
7 4; ...
7 8; ...
9 9; ...
9 1; ...
9 2; ...
9 6; ...
9 2];
[Key, iKey, iA] = unique(A(:, 1));
R = zeros(numel(Key), 1 + mode(iA)); % Pre-allocate
for k = 1:numel(Key)
index = (iA == k);
R(k, 1:sum(index) + 1) = [Key(k), A(index, 2).'];
end
[B, N, Index] = RunLength(A(:, 1));
R = zeros(numel(B), 1 + max(N)); % Pre-allocate
for k = 1:numel(Key)
R(k, 1) = B(k);
R(k, 2:N(k) + 1) = A(Index(k):Index(k)+N(k)-1, 2).';
end
0 commentaires
Voir également
Catégories
En savoir plus sur Matrices and Arrays dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!