Neural Network Test Data
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi everyone; I have the this neural Network made by

the training Function is a Bayesian regularization backpropagation. I don't understand why the test value are not good even if the training data are almost perfect

0 commentaires
Réponses (1)
Greg Heath
le 20 Juil 2017
It looks like a case of overtraining an overfit net. If you have O-dimensional outputs and use the default Ntrn ~ 0.7*N then you have
Ntrneq = 0.7*N*O = 0.63*N training equations
Whereas the number of unknown weights is
Nw = (I+1)*H1+(H1+1)*H2+(H2+1)*H3 +(H3+1)*O
= 3*25++26*15+16*15+16*9 ~849
N >> 849/.63 ~ 1348 So how much data do you have?
Using Bayesian regularization should help.
However insufficient details.
Greg
1 commentaire
Greg Heath
le 20 Juil 2017
I'm old fashioned and guided by the following principle
1. Make life as pleasant as possible:
a. Don't worry if you can't model more than 99%
of the average target variance
b. Use as few hidden layers as possible
c. Use as few hidden nodes as possible.
2. Search both NEWSREADER and ANSWERS with
greg Hmin Hmax
Hope this helps.
Greg
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!