How to perform stratified 10 fold cross validation for classification in MATLAB?
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Machine Learning Enthusiast
le 21 Juil 2017
Commenté : uma
le 9 Mai 2022
My implementation of usual K-fold cross-validation is pretty much like:
K = 10;
CrossValIndices = crossvalind('Kfold', size(B,2), K);
for i = 1: K
display(['Cross validation, folds ' num2str(i)])
IndicesI = CrossValIndices==i;
TempInd = CrossValIndices;
TempInd(IndicesI) = [];
xTraining = B(:, CrossValIndices~=i);
tTrain = T_new1(:, CrossValIndices~=i);
xTest = B(:, CrossValIndices ==i);
tTest = T_new1(:, CrossValIndices ==i);
end
But To ensure that the training, testing, and validating dataset have similar proportions of classes (e.g., 20 classes).I want use stratified sampling technique.Basic purpose is to avoid class imbalance problem.I know about SMOTE technique but i want to apply this one.
3 commentaires
Réponse acceptée
Tom Lane
le 25 Juil 2017
If you have the Statistics and Machine Learning Toolbox, consider the cvpartition function. It can define stratified samples.
3 commentaires
Plus de réponses (1)
ashik khan
le 18 Nov 2018
What are the value of B and T_new1 ??
K = 10;
CrossValIndices = crossvalind('Kfold', size(B,2), K);
for i = 1: K
display(['Cross validation, folds ' num2str(i)])
IndicesI = CrossValIndices==i;
TempInd = CrossValIndices;
TempInd(IndicesI) = [];
xTraining = B(:, CrossValIndices~=i);
tTrain = T_new1(:, CrossValIndices~=i);
xTest = B(:, CrossValIndices ==i);
tTest = T_new1(:, CrossValIndices ==i);
end
0 commentaires
Voir également
Catégories
En savoir plus sur Get Started with Statistics and Machine Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!