Speed up fminbnd using vectorization
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to optimize this piece of code. I am using the function fminbnd on a vector, splitting the task on its single entries using a loop.
Would it be possible to speed it up vectorizing the process?
for i = 1:A
for ii= 1:B
for iii = 1:C
fun = @(x) (x * variable(i,ii,iii))^2 ;
[arg_min(i,ii,iii), min_(i,ii,iii)] = fminbnd(fun,0,2);
end
end
end
Thanks for the attention.
Sincerely
Luca
0 commentaires
Réponse acceptée
Matt J
le 12 Août 2017
In your example, the solution is always x=0, so a trivial vectorized solution would be
arg_min=zeros(A,B,C);
min_ = arg_min;
More generally, no, vectorization will not help in a situation like this. You could consider parallelizing the loop using PARFOR.
0 commentaires
Plus de réponses (2)
Nick Durkee
le 24 Mai 2018
Modifié(e) : Matt J
le 24 Mai 2018
I actually developed a solution to this problem for my research. It's available on the file exchange.
0 commentaires
Voir également
Catégories
En savoir plus sur Optimization dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!