What are and how to define indepedent unit wiener processes?
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I currently read some papers where i find the term "mutually indepedent unit Wiener processes", is this term a form of Wiener definition and if so, how can i implement it in matlab? Does it mean that my result must have mean = 0, variance = 1? A paper example is http://pdfs.semanticscholar.org/d771/c6a665b40f6e0a8465a0e73f4810fffdacef.pdf (see section 2.1 ,2.2). I found some code for Wiener at https://me.ucsb.edu/~moehlis/APC591/tutorials/tutorial7/node2.html and implemented the following script
T = 1; N = 500;
dt = T/N;
dW = zeros(1,N); % preallocate arrays ...
W = zeros(1,N); % for efficiency
dW(1) = sqrt(dt)*randn; % first approximation outside the loop ...
W(1) = dW(1); % since W(0) = 0 is not allowed
for j = 2:N
dW(j) = sqrt(dt)*randn; % general increment
W(j) = W(j-1) + dW(j);
end
% figure;
% plot([0:dt:T],[0,W],'r-') % plot W against t
% xlabel('t','FontSize',16)
% ylabel('W(t)','FontSize',16,'Rotation',0)
% mean and variance
Mean1 = mean(W)
variance1 = var(W)
The mean is close to zero, but the variance is not close to one.
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Testing Frameworks dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!