Widrow-Hoff delta rule method with linear layer (adaline)
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
i want to use learnwb which Widrow-Hoff delta rule (also known as least mean square (LMS) algorithm) and updatesits weights and bias when a training sample is presented. this is my code x=401*113 y=1*113 net = linearlayer(0,0.001); net = configure(net,x,y); net.trainFcn = 'trainb'; net.trainParam.epochs = 788; net=train(net,x,y); outputs=net(x); e=output-y ee=e.^2 eee=sum(ee) rmse=sqrt(mean(eee)); zz= postreg (outputs , y) but my error is root mean square error is very high ? could you please give my some suggestion ? is it my training method correct ?
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Define Shallow Neural Network Architectures dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!