Using the ellipse graph.
11 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
In polar coordinates (r,t), the equation of an ellipse with one of its foci at the origin is r(t) = a(1 - e2)/(1 - (e)cos(t)) I'm confused how to set this up, as I have never occurred an ellipse graph before. where a is the size of the semi-major axis (along the x-axis) and e is the eccentricity. Plot ellipses using this formula, ensuring that the curves are smooth by selecting an appropriate number of points in the angular (t) coordinate Thank you.
function untitled3
a = 1/2(b);
e = 0.5;
t = linspace(0,2*pi);
r = a(1 - e.^2)./(1 - (e)*cos(t));
plot(r,t)
axis equal
end
0 commentaires
Réponses (3)
Image Analyst
le 30 Sep 2017
You need to define b using a and e, not assume b is already defined like you did.
Henry Giddens
le 30 Sep 2017
Your equation ends up with some negative values - (which I'm not sure can be correct?), but if you are using polar coordinates, then use the polarplot or polar commands:
polarplot(t,abs(r))
0 commentaires
Ali Nafar
le 13 Juin 2019
L=0.5;
e=0.5;
phi0=0;
phi=linspace(0,2*pi);
rho=L*(1-e^2)./(1-e*cos(phi-phi0));
polar(phi,rho)
0 commentaires
Voir également
Catégories
En savoir plus sur 2-D and 3-D Plots dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!