How can I solve the equation of curvature on PDE Toolbox?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
The equation is ∇n̂=2*curvature, Curvature is a constant
n̂ = ∇f/∥∇f∥ (Unit normal)
Here f is f(x,y)
I made the geometry in PDE Toolbox, meshed it and inputted the values in PDE Toolbox. But I am unable to input ∥∇f∥. I want to be ||∇f||= sqrt(x^2+y^2+u^2)
0 commentaires
Réponses (1)
Precise Simulation
le 26 Oct 2017
Modifié(e) : Precise Simulation
le 29 Oct 2017
∥∇f∥ should typically be sqrt(fx^2+fy^2+eps) where eps is a small constant to avoid divisions by zeros (since ∥∇f∥ is in the denominator). As this look like a Hamilton-Jacobi distance function problem another approach would be to transform the equation to a time dependent one, which should be somewhat easier to solve.
2 commentaires
Precise Simulation
le 31 Oct 2017
Yes, if your function 'f' is labelled 'u' in the pde implementation.
Voir également
Catégories
En savoir plus sur Geometry and Mesh dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!