How could I translate this Python code to Matlab?

4 vues (au cours des 30 derniers jours)
Gaëtan Poirier
Gaëtan Poirier le 26 Oct 2017
Commenté : Audumbar Dhage le 29 Avr 2019
I have this python code that I would like to convert to Matlab code. Could anyone help me understand what is going on and help convert from one language to the other?
The code is as follows:
import random
N = 15
L = 10
sigma = 0.075
n_runs = 800
for runs in range(n_runs):
y = [random.uniform(0.0, L - 2 * N * sigma) for k in range(N)]
y.sort()
print [y[i] + (2 * i + 1) * sigma for 1 in range (N)]|
Much thanks to anyone who can assist me.
Update: I updated the code, if anyone can help, that would be great.
  2 commentaires
Gaëtan Poirier
Gaëtan Poirier le 26 Oct 2017
Could anyone help with the new code? The distribution is not correct.
Audumbar Dhage
Audumbar Dhage le 29 Avr 2019
I have Python code i want to convert it into matlab

Connectez-vous pour commenter.

Réponse acceptée

Andrei Bobrov
Andrei Bobrov le 26 Oct 2017
Modifié(e) : Andrei Bobrov le 26 Oct 2017
N = 15;
L = 10;
sigma = 0.075;
n_configs = 100;
rejections = 0 ;
x = zeros(N,n_configs);
for config = 1:n_configs
while 1
x(:,config) = sort((L-2*sigma)*rand(N,1));
if min(diff(x(:,config))) > 2*sigma
break
end
end
end
or
LL = linspace(0,L,N+1)';
x = (L/N - 2*sigma)*rand(N,n_configs) + LL(1:end-1) + sigma;
  2 commentaires
Gaëtan Poirier
Gaëtan Poirier le 26 Oct 2017
Modifié(e) : Gaëtan Poirier le 26 Oct 2017
Thank you so much for the answer! You may recognize this as a solution to the probability distribution to the random clothes-pins on a clothes-line problem (I hope!). However, I'm not getting the distribution I was hoping for. Both outputs are different.
Audumbar Dhage
Audumbar Dhage le 29 Avr 2019
I have to convert python code to matlab

Connectez-vous pour commenter.

Plus de réponses (1)

harshi yaduvanshi
harshi yaduvanshi le 6 Avr 2018
i have this question i want to convert this python code to matlab.
import random;
import pandas as pd
import numpy as np
def sqrt_sum(a,b): return round(np.sqrt(np.sum((np.array(a)-np.array(b))**2)),5)
def weighted(W,d): return (np.multiply(W,d))
def partition(X,N,L,R,W):
#compute distances
p=[[] for i in range(N)]
w_dist=[]
for i in range(N):
for j in range(L):
dj=sqrt_sum(X.ix[i].tolist(),R[j])
p[i].append(dj)
wj=sum(weighted(W,p[i]))
w_dist.append(wj)
max_d=max(w_dist)
min_d=min(w_dist)
interval_length=(max_d - min_d)/L
#find ranges ranges=[] ranges.append(min_d) #find all ranges for j in range(L): rangej=min_d + interval_length min_d=rangej ranges.append(rangej)
X=X.values.tolist()
#now put the elements into range intancess
#############################################
pj=[[] for i in range(L)]
for i in range(N):
for j in range(len(ranges)-1):
if w_dist[i]>=ranges[j] and w_dist[i]<=ranges[j+1]:
pj[j].append(X[i])
return ranges,pj
def Search_phase(X,N,L,R,W,K,Q,ranges,pj): dq=0 knn=[] for j in range(L): d=sqrt_sum(Q,R[j]) dq=dq+weighted(W[j],d) for i in range(len(ranges)-1): if dq>=ranges[i] and dq<=ranges[i+1]: distance=[] for j in range(len(pj[i])): distance.append(float(sqrt_sum(Q,pj[i][j]))) distance=np.asarray(distance) lists=distance.argsort()[:5] for x in lists: knn.append(pj[i][x])
return knn
def fetching_data(): X=pd.read_csv("IRIS(2).csv",header=None) N=len(X) L=4 R = X.sample(L)
R=R.values.tolist()
W=[0.1,0.3,0.8,0.2]
K=5
Q=[0.196667,0.166667,0.389831,0.375000]
return X,N,L,R,W,K,Q
X,N,L,R,W,K,Q=fetching_data() ranges,pj=partition(X,N,L,R,W) KNN=Search_phase(X,N,L,R,W,K,Q,ranges,pj) print("top k-nn are",KNN)

Catégories

En savoir plus sur Call Python from MATLAB dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by