relationship between RMSE and R^2
27 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
First of all this is more like a theoretical question than a methodological one. I made a script to fit some time series data. I fitted many data series and calculated their goodness of fit statistics. When I analyzed the resulting data I found an inverse relationship between RMSE and R^2.
I´ve look around the web and my statistics books looking for a possible explanation but with no luck.
Is there anyone here who can give me some ideas ?
0 commentaires
Réponses (2)
Tom Lane
le 24 Avr 2012
R^2 = 1 - SSE/SST = 1 - DFE*RMSE^2/SST
Here SSE is the error sum of squares, SST is the total sum of squares, and DFE is the degrees of freedom for error. So you would expect R^2 to go down as RMSE goes up. Is that what you meant by an inverse relationship?
0 commentaires
Samuel Fonseca
le 24 Avr 2012
2 commentaires
Tom Lane
le 25 Avr 2012
R^2 is sensitive to the x range. That's what some people dislike about it. RMSE should not be sensitive if the model is correct. However, usually a bigger range leads to large R^2 and no change in RMSE. You seem to be saying R^2 is smaller and RMSE is smaller. That is unexpected.
Voir également
Catégories
En savoir plus sur Get Started with Curve Fitting Toolbox dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!