Phase Portrait with Solution Curves
9 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
So i was trying to solve the following system of differential equation and its phase portrait. x'=x y'=-y According to this page http://matlab.cheme.cmu.edu/2011/08/09/phase-portraits-of-a-system-of-odes/ I wrote the following
f=@(t,X)[X(1); -X(2)];
x1=linspace(-5,5,20);
x2=linspace(-5,5,20);
[x y]=meshgrid(x1,x2);
size(x)
size(y)
u=zeros(size(x));
v=zeros(size(x));
t=0;
for i=1:numel(x)
Xprime=f(t,[x(i); y(i)]);
u(i)=Xprime(1);
v(i)=Xprime(2);
end
quiver(x,y,u,v,'k');figure(gcf)
xlabel('x_1')
ylabel('x_2')
axis tight equal;
hold on
for i=-5:1:5
for x20=[-5 5]
if (-5<i & i<5 & -5<x20 & x20<5)
continue
end
[ts xs]=ode45(f,[0 50],[0;x20]);
plot(xs(:,1),xs(:,2))
%plot(xs(1,1),xs(1,2),'ko')
%plot(xs(end,1),xs(end,2),'ks')
end
end
hold off
This gives me its phase portrait ONLY. As sson as I replace "0" in the solution vector input in [ts xs]=ode45(f,[0 50],[0;x20]) with "i" to get multiple solution curves, it does not give me proper answer. What am I doing wrong here? p.s.: The equilibrium/critical point here is a saddle point.
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!