Info

Cette question est clôturée. Rouvrir pour modifier ou répondre.

Are there some issues, if I run programs in MATLAB R2017a that I have created using MATLAB R2010a?

1 vue (au cours des 30 derniers jours)
naygarp
naygarp le 13 Nov 2017
Clôturé : MATLAB Answer Bot le 20 Août 2021
I have used a program that I ran in MATLAB R2010a and later I ran the same code in MATLAB R2017a, I have some issues with the graphs. I am getting some different graphs in MATLAB R2017a
  2 commentaires
M
M le 13 Nov 2017
Could you post your code and explain exactly what different behavior you get ?
naygarp
naygarp le 13 Nov 2017
This is the Blasisus equation...Solving it using Shooting method with Runge-Kutta 4th order numerical technique, I got the code from MATLAB central website, the graphs obtained are wayward, I got a differnt sets of graphs using MATLAB R2010a.
%Fourth Runge Kutta for solving Blasius Equation %-----------------------------------------------
%Blasius Equation : 2f'''+ff'=0 %-----------------------------------------------
%Boundary Condition
%1. f'(0) = 0
%2. f'(inf) = 0
%3. f(0) = 0
%from shooting method
%4. f"(0) = 0.332
%-----------------------------------------------
%find: f,f" and f'''
%-----------------------------------------------
%Given
%eta = x
%f = y0,f'=y1,f"=y2,f'''= -(1/2)*y0*y2
%-----------------------------------------------
func1 = inline('y1','x','y0','y1','y2');
%-----------------------------------------------
func2 = inline('y2','x','y0','y1','y2');
%-----------------------------------------------
func3 = inline('-0.5*y0*y2','x','y0','y1','y2');
%-----------------------------------------------
%input: x = 0 , y0 = 0 , y1= 0
% y2 = 0.332 , total = 7 and h = 0.1
%-----------------------------------------------
x = input('\n Enter the value of x : ');
y0 = input( 'Enter the value of y0 : ');
y1 = input( 'Enter the value of y1 : ');
y2 = input( 'Enter the value of y2 : ');
total = input('Enter the value of total : ');
h = input( 'Enter the value of h : ');
fprintf('\n Solution with step size =%5.3f is:',h);
fprintf('\n x y0 y1 y2');
fprintf('\n%16.3f%16.3f%16.3f%16.3f',x,y0,y1,y2);
for i = 1:(total/h)
ak1y0 = func1(x,y0,y1,y2);
ak1y1 = func2(x,y0,y1,y2);
ak1y2 = func3(x,y0,y1,y2);
xx = x + h/2.;
yy0 = y0 + h*ak1y0/2.;
yy1 = y1 + h*ak1y1/2.;
yy2 = y2 + h*ak1y2/2.;
ak2y0 = func1(xx,yy0,yy1,yy2);
ak2y1 = func2(xx,yy0,yy1,yy2);
ak2y2 = func3(xx,yy0,yy1,yy2);
yy0 = y0 + h*ak2y0/2.;
yy1 = y1 + h*ak2y1/2.;
yy2 = y2 + h*ak2y2/2.;
ak3y0 = func1(xx,yy0,yy1,yy2);
ak3y1 = func2(xx,yy0,yy1,yy2);
ak3y2 = func3(xx,yy0,yy1,yy2);
all_x(i) = x;
all_y0(i) = y0;
all_y1(i) = y1;
all_y2(i) = y2;
xx = x + h;
yy0 = y0 + h*ak3y0;
yy1 = y1 + h*ak3y1;
yy2 = y2 + h*ak3y2;
ak4y0 = func1(xx,yy0,yy1,yy2);
ak4y1 = func2(xx,yy0,yy1,yy2);
ak4y2 = func3(xx,yy0,yy1,yy2);
y0 = y0 + (ak1y0 + 2.*ak2y0 + 2.*ak3y0 + ak4y0)*h/6.;
y1 = y1 + (ak1y1 + 2.*ak2y1 + 2.*ak3y1 + ak4y1)*h/6.;
y2 = y2 + (ak1y2 + 2.*ak2y2 + 2.*ak3y2 + ak4y2)*h/6.;
x = x + h;
fprintf('\n%16.3f%16.3f%16.3f%16.3f',x,y0,y1,y2);
end
plot(all_x, all_y0, 'k-', all_x, all_y1, 'b-', all_x, all_y2, 'g-')

Réponses (1)

Jan
Jan le 13 Nov 2017
The graphic system has changed in R2014b substantially. The new system is called "HG2". There are many different possibility that this change influence the output. So please post the relevant code, the input data and screenshot of the unexpected output. Otherwise the question far to general to provide explicit help.
  1 commentaire
naygarp
naygarp le 13 Nov 2017
This is the Blasisus equation...Solving it using Shooting method with Runge-Kutta 4th order numerical technique, I got the code from MATLAB central website, the graphs obtained are wayward, I got a differnt sets of graphs using MATLAB R2010a.
%Fourth Runge Kutta for solving Blasius Equation
%-----------------------------------------------
%Blasius Equation : 2f'''+ff'=0
%-----------------------------------------------
%Boundary Condition
%1. f'(0) = 0
%2. f'(inf) = 0
%3. f(0) = 0
%from shooting method
%4. f"(0) = 0.332
%-----------------------------------------------
%find: f,f" and f'''
%-----------------------------------------------
%Given
%eta = x
%f = y0,f'=y1,f"=y2,f'''= -(1/2)*y0*y2
%-----------------------------------------------
func1 = inline('y1','x','y0','y1','y2');
%-----------------------------------------------
func2 = inline('y2','x','y0','y1','y2');
%-----------------------------------------------
func3 = inline('-0.5*y0*y2','x','y0','y1','y2');
%-----------------------------------------------
%input: x = 0 , y0 = 0 , y1= 0
% y2 = 0.332 , total = 7 and h = 0.1
%-----------------------------------------------
x = input('\n Enter the value of x : ');
y0 = input( 'Enter the value of y0 : ');
y1 = input( 'Enter the value of y1 : ');
y2 = input( 'Enter the value of y2 : ');
total = input('Enter the value of total : ');
h = input( 'Enter the value of h : ');
fprintf('\n Solution with step size =%5.3f is:',h);
fprintf('\n x y0 y1 y2');
fprintf('\n%16.3f%16.3f%16.3f%16.3f',x,y0,y1,y2);
for i = 1:(total/h)
ak1y0 = func1(x,y0,y1,y2);
ak1y1 = func2(x,y0,y1,y2);
ak1y2 = func3(x,y0,y1,y2);
xx = x + h/2.;
yy0 = y0 + h*ak1y0/2.;
yy1 = y1 + h*ak1y1/2.;
yy2 = y2 + h*ak1y2/2.;
ak2y0 = func1(xx,yy0,yy1,yy2);
ak2y1 = func2(xx,yy0,yy1,yy2);
ak2y2 = func3(xx,yy0,yy1,yy2);
yy0 = y0 + h*ak2y0/2.;
yy1 = y1 + h*ak2y1/2.;
yy2 = y2 + h*ak2y2/2.;
ak3y0 = func1(xx,yy0,yy1,yy2);
ak3y1 = func2(xx,yy0,yy1,yy2);
ak3y2 = func3(xx,yy0,yy1,yy2);
all_x(i) = x;
all_y0(i) = y0;
all_y1(i) = y1;
all_y2(i) = y2;
xx = x + h;
yy0 = y0 + h*ak3y0;
yy1 = y1 + h*ak3y1;
yy2 = y2 + h*ak3y2;
ak4y0 = func1(xx,yy0,yy1,yy2);
ak4y1 = func2(xx,yy0,yy1,yy2);
ak4y2 = func3(xx,yy0,yy1,yy2);
y0 = y0 + (ak1y0 + 2.*ak2y0 + 2.*ak3y0 + ak4y0)*h/6.;
y1 = y1 + (ak1y1 + 2.*ak2y1 + 2.*ak3y1 + ak4y1)*h/6.;
y2 = y2 + (ak1y2 + 2.*ak2y2 + 2.*ak3y2 + ak4y2)*h/6.;
x = x + h;
fprintf('\n%16.3f%16.3f%16.3f%16.3f',x,y0,y1,y2);
end
plot(all_x, all_y0, 'k-', all_x, all_y1, 'b-', all_x, all_y2, 'g-')

Cette question est clôturée.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by