
How to plot a spherical cap in 2-D
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I would like to know how to plot the top part of a sphere or the spherical cap in 2-D (circular segment) as shown here: http://mathworld.wolfram.com/SphericalCap.html. I already know the radius of the spherical cap, a1, the contact angle, theta (the angle between the normal to the sphere at the bottom of the cap and the base plane) and the height of the spherical cap, h.
a1 = 1;
theta = 1.34; %in radians
h = a1 * (1 - cos(theta)) / sin(theta) ;
0 commentaires
Réponses (1)
Akira Agata
le 20 Nov 2017
I think fsurf function would be help, like:
funx = @(theta,phi) sin(theta).*cos(phi);
funy = @(theta,phi) sin(theta).*sin(phi);
funz = @(theta,phi) cos(theta);
fsurf(funx,funy,funz,[0 1.34 -pi pi]) % plot the cap where theta = 0 ~ 1.43 radian

5 commentaires
Akira Agata
le 27 Nov 2017
Thanks for the clarification!
OK. Then, how about the following example? I hope this would be similar to what you want to plot.
a1 = 1;
theta = 1.34; %in radians
t = linspace(-theta/2 + pi/2, theta/2 + pi/2);
x = a1*cos(t);
y = a1*sin(t);
figure
fplot(@(phi) a1*sin(phi), @(phi) a1*cos(phi),[0 2*pi],'k:')
hold on
patch(x,y,'g')

Carlos Reyes
le 14 Fév 2019
Modifié(e) : Carlos Reyes
le 14 Fév 2019
Greetings,
Can you show how would you go about coloring other areas in this sphere? For example say I would like to color in blue the area from 0.8 down to 0 in a blue color.
I tried it like this: (but this not cover the area completely)
R = 1 ;
theta = 1.85; %in radians
t = linspace(-theta/2 + pi/2, theta/2 + pi/2);
x = R*cos(t);
y = R*sin(t);
R2 = 0.6;
theta2 = 3.16; %radians
t2= linspace(-theta2/2 + pi/2, theta2/2 + pi/2);
x2= R2*cos(t2);
y2= R2*sin(t2);
figure
fplot(@(phi) R*sin(phi), @(phi) R*cos(phi),[0 2*pi],'k:')
hold on
patch(x,y,'b')
patch(x2,y2,'g')
Voir également
Catégories
En savoir plus sur Surface and Mesh Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!