Triple integral with dependent parameters.
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
The form of my problem is as follows:
$\Psi=C\int_{-\inf}^\inf\int_{-\inf}^\inf\left(f(x,y)\times \left(\int_0^t g(x,t)dt\right)dxdy\right)$
I have already attempted numerical solutions using Matlab's ```integrate3```, without success. However ```integrate3``` is meant for problems of the form:
$\Psi=\int_a^b\int_c^d\int_e^f f(x,y,z)dxdydz$
Similarly, attempts made with scipy's integration toolkit have also not borne fruit.
I have attempted to first calculate $\int_0^tg(x,t)$ at discrete $x$ values and then place it in $\Psi$ but for rather obvious reasons that does not work either.
Additionally, $g(x,t)$ cannot be factored in the form of $h(x)\times i(t)$, which might have allowed for a by parts solution which might be integrated symbolically (for x) and numerically for t.
Also $\int_0^t\int_{-\inf}^{\inf} g(x,t)$ has singularities at multiple points.
Is there a cannonical way of solving this?
2 commentaires
David Goodmanson
le 26 Nov 2017
Hi Rohit, what do the functions look like? Hard to say much otherwise.
Réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!