Problems solving cupled 2nd Order ODE with od45

5 vues (au cours des 30 derniers jours)
Erik Kostic
Erik Kostic le 28 Nov 2017
Hello.
I am given the task of simulating the two-dimensional motion of a magnetic pendulum in the x-y-plane. The problem comes down in solving this system of cupled 2nd order ordinary differential equation:
x'' + R*x' + sum_{i=1}^3 (m_i-x)/(sqrt((m1_i-x)^2 + (m2_i-y)^2 + d^2))^3 + G*x == 0
y'' + R*y' + sum_{i=1}^3 (m_i-y)/(sqrt((m1_i-x)^2 + (m2_i-y)^2 + d^2))^3 + G*y == 0
Those eqations discribe the motion in the plane. I know i can use the method "ode45" to solve such a problem, given some initial values.
I have tried it a few times, but didn't came to a solution.
I hope someone can help me. (x',y') = 0 no initial velocity and position (x,y) could be anywhere.
GREETINGS
  4 commentaires
Torsten
Torsten le 29 Nov 2017
Why don't you just show what you have so far ?
Best wishes
Torsten.
Erik Kostic
Erik Kostic le 29 Nov 2017
Modifié(e) : Torsten le 29 Nov 2017
Hello Torsten
clear all, clc;
%%Constants
R = 0.2;
C = 0.3;
d = 0.5;
a = 1;
%%Position of magnets with input a,d > 0
mag1 = [ a/2, -sqrt(3)*a, -d];
mag2 = [-a/2, -sqrt(3)*a, -d];
mag3 = [ 0, sqrt(3)*a, -d];
%%Position of mass
pmp = [-10, -15, 0];
%%Velocity of mass
pmv = [ 0, 0, 0];
%%Acceleration of mass
pma = [ 0, 0, 0];
%%Matrix of trajectories
PMPos = zeros(3,1);
PMPos(:,1) = pmp;
%%ODE Solving
syms x(t) y(t)
ode1 = diff(x,t,2) + R*diff(x,t,1) - ( (mag1(1)-x)/(sqrt((mag1(1)-x)^2+(mag1(2)-y)^2+(mag1(3))^2)^3) + ...
(mag2(1)-x)/(sqrt((mag2(1)-x)^2+(mag2(2)-y)^2+(mag2(3))^2)^3) + ...
(mag3(1)-x)/(sqrt((mag3(1)-x)^2+(mag3(2)-y)^2+(mag3(3))^2)^3) ) +C*x == 0;
ode2 = diff(y,t,2) + R*diff(y,t,1) - ( (mag1(2)-y)/(sqrt((mag1(1)-x)^2+(mag1(2)-y)^2+(mag1(3))^2)^3) + ...
(mag2(2)-y)/(sqrt((mag2(1)-x)^2+(mag2(2)-y)^2+(mag2(3))^2)^3) + ...
(mag3(2)-y)/(sqrt((mag3(1)-x)^2+(mag3(2)-y)^2+(mag3(3))^2)^3) ) +C*y == 0;
odes = [ode1; ode2];
V = odeToVectorField(ode1);
M = matlabFunction(V,'vars', {'t','Y'});
Interval = [0 20];
Conditions = [0 0];
Solution = ode45(M,Interval,Conditions);

Connectez-vous pour commenter.

Réponses (2)

Torsten
Torsten le 29 Nov 2017
M=@(t,y)[y(2);-R*y(2)+((mag1(1)-y(1))/(sqrt((mag1(1)-y(1))^2+(mag1(2)-y(3))^2+(mag1(3))^2)^3)+(mag2(1)-y(1))/(sqrt((mag2(1)-y(1))^2+(mag2(2)-y(3))^2+(mag2(3))^2)^3)+(mag3(1)-y(1))/(sqrt((mag3(1)-y(1))^2+(mag3(2)-y(3))^2+(mag3(3))^2)^3) )-C*y(1);y(4);-R*y(4)+((mag1(2)-y(3))/(sqrt((mag1(1)-y(1))^2+(mag1(2)-y(3))^2+(mag1(3))^2)^3) +(mag2(2)-y(3))/(sqrt((mag2(1)-y(1))^2+(mag2(2)-y(3))^2+(mag2(3))^2)^3) +(mag3(2)-y(3))/(sqrt((mag3(1)-y(1))^2+(mag3(2)-y(3))^2+(mag3(3))^2)^3) ) -C*y(3)];
Interval=[0 20];
Conditions = [x; dx/dt; y ; dy/dt] at t=0 ??
Solution = ode45(M,Interval,Conditions);
Best wishes
Torsten.
  6 commentaires
Erik Kostic
Erik Kostic le 29 Nov 2017
Hey Torsten, thank you very much you are a germ :D
Steven Lord
Steven Lord le 29 Nov 2017
Consider specifying the 'OutputFcn' option in your ode45 call as part of the options structure created by the odeset function. There are a couple of output functions included with MATLAB (the description of the OutputFcn option on that documentation page lists them) and I suspect one of odeplot, odephas2, or odephas3 will be of use to you.

Connectez-vous pour commenter.


Dariusz Skibicki
Dariusz Skibicki le 16 Mar 2023
Replace
V = odeToVectorField(ode1);
with
V = odeToVectorField(odes);
  1 commentaire
Dariusz Skibicki
Dariusz Skibicki le 16 Mar 2023
And
Conditions = [0 0];
with
Conditions = [0 1 0 1];

Connectez-vous pour commenter.

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Tags

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by