Invalid training data. The output size (5) of the last layer doesn't match the number of classes (5). How to match output size??

1 vue (au cours des 30 derniers jours)
net=vgg16();
imds = imageDatastore(fullfile('E:\','data','labels'),...
'IncludeSubfolders',true,'FileExtensions','.dcm','LabelSource','foldernames');
labelCount = countEachLabel(imds);
trainingNumFiles = 105;
rng(1) % For reproducibility
[trainData,testData] = splitEachLabel(imds,...
trainingNumFiles,'randomize');
imageSize = [512 512 1];
numClasses = 5;
encoderDepth = 9;
lgraph = segnetLayers(imageSize,numClasses,encoderDepth);
plot(lgraph)
options = trainingOptions('sgdm','InitialLearnRate',1e-3, ...
'MaxEpochs',50,'VerboseFrequency',10);
seg = trainNetwork(imds,lgraph,options)

Réponse acceptée

nima aalizade
nima aalizade le 16 Fév 2018
Modifié(e) : nima aalizade le 16 Fév 2018
hello,
for using SegNet, you most have pixel labeled data with image labeler. you can use this and this example to understand better.

Plus de réponses (1)

abdulkader helwan
abdulkader helwan le 25 Déc 2017
Hello.. i am having the same problem here. could u please tell me how u solved it if u did so. thanks
  4 commentaires
nima aalizade
nima aalizade le 16 Fév 2018
Modifié(e) : nima aalizade le 16 Fév 2018
hello
for using SegNet, you most have pixel labeled data with image labeler. you can use this and this example to understand better.
Mihai Mihaela
Mihai Mihaela le 8 Déc 2019
Same issue here. The attached link doesn't work.

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by