How can I determine if two eigenvectors form an open or closed subspace?

3 vues (au cours des 30 derniers jours)
Hi, I have two eigenvectors, which form a subspace in H. Is there an easy way to determine whether the subspace they form is open or closed in H?
Thanks
  2 commentaires
Torsten
Torsten le 21 Déc 2017
What is H ?
Best wishes
Torsten.
Sergio Manzetti
Sergio Manzetti le 21 Déc 2017
Modifié(e) : Sergio Manzetti le 21 Déc 2017
Hi Torsten, H=Hilbert space (L^2[-inf, +inf]).

Connectez-vous pour commenter.

Réponse acceptée

Torsten
Torsten le 21 Déc 2017
  3 commentaires
Matt J
Matt J le 21 Déc 2017
Modifié(e) : Matt J le 21 Déc 2017
From the document in Torsten's link,
"Every finite dimensional subspace of a Hilbert space H is closed."
The span of any two vectors is clearly an example of a finite dimensional sub-space and is therefore closed in L2.
Sergio Manzetti
Sergio Manzetti le 22 Déc 2017
Thanks Matt. I take this is because they start from some point and are thus not infinite?

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by