I need to replace a variable with it equivalent matrix in a function

6 vues (au cours des 30 derniers jours)
Sarah Kandeel
Sarah Kandeel le 28 Déc 2017
I need the function E to be only in term of the variable 'D'. So I need to replace the 'k' with a matrix the contains only 'D'
This is the value of E:
((17164578615225570660380539555542573*k^(1/2)*log(D + 1))/166153499473114484112975882535043072 + (262204404621380299*2^(1/2)*k^(1/2))/9223372036854775808 + (2424202753736887*3^(1/2)*k^(1/2))/576460752303423488 + (5410351780724089*5^(1/2)*k^(1/2))/2882303761517117440 + (7528960095156179*6^(1/2)*k^(1/2))/36893488147419103232 + (2505730989032972149*10^(1/2)*k^(1/2))/1475739525896764129280 + (8842625771650701*14^(1/2)*k^(1/2))/147573952589676412928 + (3844779561451079*15^(1/2)*k^(1/2))/2882303761517117440 + (8666343670811657*30^(1/2)*k^(1/2))/368934881474191032320 + (6527015628853679*70^(1/2)*k^(1/2))/184467440737095516160 + (22586880285468537*481^(1/2)*k^(1/2))/1365059061454506819584 + (7272608261210661*962^(1/2)*k^(1/2))/42658095670453338112 + (262204404621380299*1443^(1/2)*k^(1/2))/341264765363626704896 + (25999031012434971*2405^(1/2)*k^(1/2))/13650590614545068195840 + (17164578615225570660380539555542573*2886^(1/2)*k^(1/2))/12295358961010471824360215307593187328 + (11534338684353237*4810^(1/2)*k^(1/2))/213290478352266690560 + (2505730989032972149*7215^(1/2)*k^(1/2))/54602362458180272783360 + (8842625771650701*10101^(1/2)*k^(1/2))/5460236245818027278336 + (5410351780724089*14430^(1/2)*k^(1/2))/213290478352266690560 + (6527015628853679*50505^(1/2)*k^(1/2))/6825295307272534097920 + (17164578615225570660380539555542573*k^(1/2))/166153499473114484112975882535043072 - (16874112378505048631143767994485025185249706192634551440106553380308219659367599466850516971541902923029737*2^(1/2)*exp(-k/2))/51497252757440425112805277288666860818505571565988146549138088471163366136405808388884891558723190784000000 + (1873106879296623377528201523369593876137260911885774871866432782906658256160455462683123361*1443^(1/2)*exp(-k/2))/211541712150131259081863894753258598134227480340903307078693681812291920945836011290624000000 - (9491567714229462699209099163400904852480349883408824857456268577003257391100291886801201819*2^(1/2)*D*exp(-k/2))/62165404551223330269422781018352605012557018849668464680057997111644937126566671941632000000 + (509659993860129657973062634657967595021820251147601164616438626444162793929*1443^(1/2)*D*exp(-k/2))/255364614831250860135085966904249941740691031970304302541013396280573952000000 - (1873106879296623377528201523369593876137260911885774871866432782906658256160455462683123361*2^(1/2)*k*exp(-k/2))/1429335892906292291093674964549044581988023515816914237018200552785756222607000076288000000 + (1873106879296623377528201523369593876137260911885774871866432782906658256160455462683123361*2^(1/2)*exp(-k/2)*log((828390857088487*D)/2251799813685248 + 3675208770282009/2251799813685248))/5717343571625169164374699858196178327952094063267656948072802211143024890428000305152000000 + (262204404621380299*2^(1/2)*k^(1/2)*log(D + 1))/9223372036854775808 + (2424202753736887*3^(1/2)*k^(1/2)*log(D + 1))/576460752303423488 + (5410351780724089*5^(1/2)*k^(1/2)*log(D + 1))/2882303761517117440 + (7528960095156179*6^(1/2)*k^(1/2)*log(D + 1))/36893488147419103232 + (2505730989032972149*10^(1/2)*k^(1/2)*log(D + 1))/1475739525896764129280 + (8842625771650701*14^(1/2)*k^(1/2)*log(D + 1))/147573952589676412928 + (3844779561451079*15^(1/2)*k^(1/2)*log(D + 1))/2882303761517117440 + (8666343670811657*30^(1/2)*k^(1/2)*log(D + 1))/368934881474191032320 + (6527015628853679*70^(1/2)*k^(1/2)*log(D + 1))/184467440737095516160 + (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*log(D + 1)*exp(-k/2))/6901746346790563787434755862277025452451108972170386555162524223799296000000 + (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*D*log(D + 1)*exp(-k/2))/6901746346790563787434755862277025452451108972170386555162524223799296000000 - (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*D*k*exp(-k/2))/1725436586697640946858688965569256363112777243042596638790631055949824000000 + (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*D*exp(-k/2)*log((828390857088487*D)/2251799813685248 + 3675208770282009/2251799813685248))/6901746346790563787434755862277025452451108972170386555162524223799296000000)/k^(1/2)
given the matrix k in terms of D, how do I replace all the k values in 'E' with the matrix itself?
Thank you.

Réponses (2)

KSSV
KSSV le 28 Déc 2017
First evaluate k which is in terms of D..and then substitute D and k in the expression for E.
Make a note of element be element operations. https://in.mathworks.com/help/fixedpoint/ref/times.html

Walter Roberson
Walter Roberson le 28 Déc 2017
newE = subs(E, k, ReplacementExpression);

Catégories

En savoir plus sur Discrete Data Plots dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by