I need to replace a variable with it equivalent matrix in a function
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I need the function E to be only in term of the variable 'D'. So I need to replace the 'k' with a matrix the contains only 'D'
This is the value of E:
((17164578615225570660380539555542573*k^(1/2)*log(D + 1))/166153499473114484112975882535043072 + (262204404621380299*2^(1/2)*k^(1/2))/9223372036854775808 + (2424202753736887*3^(1/2)*k^(1/2))/576460752303423488 + (5410351780724089*5^(1/2)*k^(1/2))/2882303761517117440 + (7528960095156179*6^(1/2)*k^(1/2))/36893488147419103232 + (2505730989032972149*10^(1/2)*k^(1/2))/1475739525896764129280 + (8842625771650701*14^(1/2)*k^(1/2))/147573952589676412928 + (3844779561451079*15^(1/2)*k^(1/2))/2882303761517117440 + (8666343670811657*30^(1/2)*k^(1/2))/368934881474191032320 + (6527015628853679*70^(1/2)*k^(1/2))/184467440737095516160 + (22586880285468537*481^(1/2)*k^(1/2))/1365059061454506819584 + (7272608261210661*962^(1/2)*k^(1/2))/42658095670453338112 + (262204404621380299*1443^(1/2)*k^(1/2))/341264765363626704896 + (25999031012434971*2405^(1/2)*k^(1/2))/13650590614545068195840 + (17164578615225570660380539555542573*2886^(1/2)*k^(1/2))/12295358961010471824360215307593187328 + (11534338684353237*4810^(1/2)*k^(1/2))/213290478352266690560 + (2505730989032972149*7215^(1/2)*k^(1/2))/54602362458180272783360 + (8842625771650701*10101^(1/2)*k^(1/2))/5460236245818027278336 + (5410351780724089*14430^(1/2)*k^(1/2))/213290478352266690560 + (6527015628853679*50505^(1/2)*k^(1/2))/6825295307272534097920 + (17164578615225570660380539555542573*k^(1/2))/166153499473114484112975882535043072 - (16874112378505048631143767994485025185249706192634551440106553380308219659367599466850516971541902923029737*2^(1/2)*exp(-k/2))/51497252757440425112805277288666860818505571565988146549138088471163366136405808388884891558723190784000000 + (1873106879296623377528201523369593876137260911885774871866432782906658256160455462683123361*1443^(1/2)*exp(-k/2))/211541712150131259081863894753258598134227480340903307078693681812291920945836011290624000000 - (9491567714229462699209099163400904852480349883408824857456268577003257391100291886801201819*2^(1/2)*D*exp(-k/2))/62165404551223330269422781018352605012557018849668464680057997111644937126566671941632000000 + (509659993860129657973062634657967595021820251147601164616438626444162793929*1443^(1/2)*D*exp(-k/2))/255364614831250860135085966904249941740691031970304302541013396280573952000000 - (1873106879296623377528201523369593876137260911885774871866432782906658256160455462683123361*2^(1/2)*k*exp(-k/2))/1429335892906292291093674964549044581988023515816914237018200552785756222607000076288000000 + (1873106879296623377528201523369593876137260911885774871866432782906658256160455462683123361*2^(1/2)*exp(-k/2)*log((828390857088487*D)/2251799813685248 + 3675208770282009/2251799813685248))/5717343571625169164374699858196178327952094063267656948072802211143024890428000305152000000 + (262204404621380299*2^(1/2)*k^(1/2)*log(D + 1))/9223372036854775808 + (2424202753736887*3^(1/2)*k^(1/2)*log(D + 1))/576460752303423488 + (5410351780724089*5^(1/2)*k^(1/2)*log(D + 1))/2882303761517117440 + (7528960095156179*6^(1/2)*k^(1/2)*log(D + 1))/36893488147419103232 + (2505730989032972149*10^(1/2)*k^(1/2)*log(D + 1))/1475739525896764129280 + (8842625771650701*14^(1/2)*k^(1/2)*log(D + 1))/147573952589676412928 + (3844779561451079*15^(1/2)*k^(1/2)*log(D + 1))/2882303761517117440 + (8666343670811657*30^(1/2)*k^(1/2)*log(D + 1))/368934881474191032320 + (6527015628853679*70^(1/2)*k^(1/2)*log(D + 1))/184467440737095516160 + (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*log(D + 1)*exp(-k/2))/6901746346790563787434755862277025452451108972170386555162524223799296000000 + (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*D*log(D + 1)*exp(-k/2))/6901746346790563787434755862277025452451108972170386555162524223799296000000 - (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*D*k*exp(-k/2))/1725436586697640946858688965569256363112777243042596638790631055949824000000 + (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*D*exp(-k/2)*log((828390857088487*D)/2251799813685248 + 3675208770282009/2251799813685248))/6901746346790563787434755862277025452451108972170386555162524223799296000000)/k^(1/2)
given the matrix k in terms of D, how do I replace all the k values in 'E' with the matrix itself?
Thank you.
0 commentaires
Réponses (2)
KSSV
le 28 Déc 2017
First evaluate k which is in terms of D..and then substitute D and k in the expression for E.
Make a note of element be element operations. https://in.mathworks.com/help/fixedpoint/ref/times.html
0 commentaires
Voir également
Catégories
En savoir plus sur Discrete Data Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!