Erroneous eigenvalue computation for large matrices in R2016a when forcing single threaded execution
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
MathWorks Support Team
le 2 Jan 2018
Réponse apportée : MathWorks Support Team
le 3 Jan 2018
Why does MATLAB R2016a produce wrong eigenvalues for large matrices (N>7799) when forced to run as a single threaded application?
Example code:
%Diagonalization of a tridiagonal matrix.
t=1; %off-diagonal elements
tic;
%creates tridiagonal matrix of size NxN
T=gallery('tridiag',N,t,0,t);
T=full(T);
T(1,N)=t;
T(N,1)=t;
[V,D]=eig(T,'vector');%compute eigenvalues and store in vector
fprintf('Invoking "eig()" yields eigenvalues:\n')
fprintf('max: %2.4f \n',max(D))
fprintf('min: %2.4f \n',min(D))
toc;
exit
Execution Command:
taskset -c 0 /opt/MATLAB/R2016a/bin/matlab -nodisplay -nodesktop -nosplash -nojvm -r "N=7800;test"
The above command yields wrong eigenvalues. The correct max and min eigenvalues are supposed to be 2 and -2 respectively.
However, the following multithreaded implementation produces accurate results:
taskset -c 0,1 /opt/MATLAB/R2016a/bin/matlab -nodisplay -nodesktop -nosplash -nojvm -r "N=7800;test"
Réponse acceptée
MathWorks Support Team
le 2 Jan 2018
CAUSE:
This error is due to a bug in the Intel Math Kernel Library 11.2.3 that was shipped with MATLAB R2016a. This is a bug that is present only in MATLAB R2016a.
SOLUTION:
Please upgrade to a different release of MATLAB in order to avoid this error.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!