How to check the kernel parameter values of a Gaussian process regression (GPR) model after training
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to train a GPR model with the length scale of the kernel function in certain range. Therefore, I did the following ( follow this example ):
params = hyperparameters('fitrgp',X,y);
params(4).Range = [1,10];
gprMdl = fitrgp(X, y, 'OptimizeHyperparameters', params);
However, after training, I found that the kernel parameters in the trained model is empty. This confuses me a lot and I tried different ranges of kernel parameters and found that this restriction on its range actually worked. So I was wondering how I could obtain the exact value of kernel parameters from the trained GPR model. Thanks in advance!
0 commentaires
Réponse acceptée
Don Mathis
le 1 Fév 2018
You can see the kernel parameters like this:
gprMdl.KernelInformation.KernelParameters
By default, params(4) (KernelScale) is not optimized. To optimize it, you'll need to set the Optimize field:
params = hyperparameters('fitrgp',X,y);
params(4).Range = [1,10];
params(4).Optimize = true;
gprMdl = fitrgp(X, y, 'OptimizeHyperparameters', params);
gprMdl.KernelInformation.KernelParameters
5 commentaires
Don Mathis
le 2 Fév 2018
That's described in the section on the KernelParameters argument: https://www.mathworks.com/help/stats/fitrgp.html?searchHighlight=fitrgp&s_tid=doc_srchtitle#input_argument_namevalue_d119e335756
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Gaussian Process Regression dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!