Optimize with handling an objective function as "Black Box"
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Ilias Seferlis
le 1 Fév 2018
Commenté : Ilias Seferlis
le 1 Fév 2018
Is there a way to optimize a costrained objective function without really knowing its expression? For example, say we have :
% main.m %
% starting point and costraints all previously defined
[Xopt,Fval] = fmincon(@obj,x0,A,B,Aeq,Beq,lb,ub,[],options);
% End of main.m %
% Objective Function obj.m %
function [F] = obj(X)
% Write Data into File for exe
fopen('X.dat','w');
dlmwrite('X.dat',X);
fclose('all');
% Run Black Box exe
system('BB.exe') % where the expression of the objective function is(unknown to us)
% Read Results from exe
F = importdata('Fval.dat')
% End of obj.m %
The above example does not work,but gives the general idea The code is also attached (Run main.m) with a very simple objective function.
0 commentaires
Réponse acceptée
Sean de Wolski
le 1 Fév 2018
Modifié(e) : Sean de Wolski
le 1 Fév 2018
The pattern you have there looks like it should work and the idea is fine.
Though I would probably recommend patternsearch over fmincon since you likely cannot guarantee that BB.exe returns smooth continuous values.
Also note that F has to be a scalar. So maybe at the end:
F = norm(F)
2 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Surrogate Optimization dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!