Not Enough Input Arguments ode15s

12 vues (au cours des 30 derniers jours)
Neil Solan
Neil Solan le 7 Fév 2018
Réponse apportée : JK le 7 Fév 2018
Trying to solve an ODE using ode15s and I'm getting this error:
Not enough input arguments.
Error in Homework3>ode1 (line 153)
theta_double_dot =
(F_0/J_eff)*cos(omega*t1)-(C_eff/J_eff)*(thetadot)-(K_eff/J_eff)*theta;
Error in Homework3 (line 113)
[t1,Y1] = ode15s(ode1,tspan,Initial,options);
Here is my code:
Initial = [theta_0,theta_dot_0,I_0];
tspan = 0:0.1:10;
%Linear Equation Solution:
[t1,Y1] = ode15s(ode1,tspan,Initial,options);
theta = Y1(:,1);
thetadot = Y1(:,2);
I = Y1(:,3);
function dxdt = ode1(t1,Y1)
g = 9.81; %[m/s^2]
M_b = 1; %[kg]
M = 0.5; %[kg]
m = 3; %[kg]
J_b = 1.25; %[kg/m^2]
k_1 = 250; %[N/m]
c_1 = 5; %[N*s/m]
c_2 = 10; %[N*s/m]
L = 1.1; %[m]
s = 0.4; %[m]
h = 0.8; %[m]
L_induct = 400*10^-6; %[H]
R = 100; %[Ohms]
alpha = 0.4; %[V*s/m]
a = 0.45; %[m]
b = 0.6; %[m]
F_0 = 15; %[N]
omega = 4.3508; %[rad/s]
theta_0 = -pi/8; %[rad]
theta_dot_0 = 0.1; %[rad/s]
I_0 = 0; %[A]
J_eff = J_b+M*(L-s)^2+((m/L)*((L-s)^3+s^3)/3);
K_eff = ((k_1*(h-s)^2)+(M_b*g*s)-(M*g*(L-s))-(m*g*((L/2)-s)));
C_eff = ((c_1*(h-s)^2)+(c_2*(s)^2));
Initial = [theta_0,theta_dot_0,I_0];
theta = Initial(1);
thetadot = Initial(2);
I = Initial(3);
theta_double_dot = (F_0/J_eff)*cos(omega*t1)-(C_eff/J_eff)*(thetadot)-(K_eff/J_eff)*theta;
I_eq = (alpha*(sqrt(((L-s)*cos(theta*thetadot-a))^2+((L-s)*sin(theta*thetadot-b))^2)-(I*R))/L_induct);
dxdt = zeros(size(Initial));
dxdt(1) = thetadot;
dxdt(2) = theta_double_dot;
dxdt(3) = I_eq;
end
I really don't have much experience with ode15s at all so for all I know I could be completely off with this one, so any other mistakes that you might see and could point out would be greatly appreciated. Thanks!

Réponses (1)

JK
JK le 7 Fév 2018
Here is the code: please ask if you have any further queries.
theta_0=1; % put your values here
theta_dot_0=2; % put your values here
I_0=3; % put your values here
Initial = [theta_0,theta_dot_0,I_0]';
tspan = 0:0.1:10;
%Linear Equation Solution:
[t1,Y1] = ode15s(@(t,Y) ode1(t,Y),tspan,Initial);
theta = Y1(:,1);
thetadot = Y1(:,2);
I = Y1(:,3);
figure
plot(t1,Y1(:,1));
title('theta');
figure
plot(t1,Y1(:,2));
title('thetadot');
figure
plot(t1,Y1(:,3));
title('I');
function dxdt = ode1(t1,~)
g = 9.81; %[m/s^2]
M_b = 1; %[kg]
M = 0.5; %[kg]
m = 3; %[kg]
J_b = 1.25; %[kg/m^2]
k_1 = 250; %[N/m]
c_1 = 5; %[N*s/m]
c_2 = 10; %[N*s/m]
L = 1.1; %[m]
s = 0.4; %[m]
h = 0.8; %[m]
L_induct = 400*10^-6; %[H]
R = 100; %[Ohms]
alpha = 0.4; %[V*s/m]
a = 0.45; %[m]
b = 0.6; %[m]
F_0 = 15; %[N]
omega = 4.3508; %[rad/s]
theta_0 = -pi/8; %[rad]
theta_dot_0 = 0.1; %[rad/s]
I_0 = 0; %[A]
J_eff = J_b+M*(L-s)^2+((m/L)*((L-s)^3+s^3)/3);
K_eff = ((k_1*(h-s)^2)+(M_b*g*s)-(M*g*(L-s))-(m*g*((L/2)-s)));
C_eff = ((c_1*(h-s)^2)+(c_2*(s)^2));
Initial = [theta_0,theta_dot_0,I_0];
theta = Initial(1);
thetadot = Initial(2);
I = Initial(3);
theta_double_dot = (F_0/J_eff)*cos(omega*t1)-(C_eff/J_eff)*(thetadot)-(K_eff/J_eff)*theta;
I_eq = (alpha*(sqrt(((L-s)*cos(theta*thetadot-a))^2+((L-s)*sin(theta*thetadot-b))^2)-(I*R))/L_induct);
dxdt = zeros(3,1);
dxdt(1) = thetadot;
dxdt(2) = theta_double_dot;
dxdt(3) = I_eq;
end

Catégories

En savoir plus sur Programming dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by