How to effectively run loops and save time in computation? I have a matrix of size 'm' and run five loops from 1 to m. The logic is explained below. How to optimize the code and save time of calculation.

2 vues (au cours des 30 derniers jours)
I need to find projection statistics for my matrix of size 'm' by initially calculating the sum of all possible observations (using logic as in code-Rousseuuw and Croux method). This needs a quite a large number of iterations. When my matrix size is 1000x1000, it takes close to 250seconds for this code to complete. Can someone help me in optimizing the code below thereby reducing the operation time.
m=1000;
H=rand(m);
rng default;
x=zeros(m,1);
y=zeros(m,1);
output1 = zeros(m,1);
output = zeros(m,1);
PS = zeros(m,1);
for k=1:m
for i=1:m
for j=1:m
if j~=i
x(j)=abs(H(i,k)+H(j,k));
end
end
mask=x~=0; % mark the non-zero elements
x=x(mask); % keep the non-zero elements
y(i)=median(x);
x=zeros(m,1); %Clearing x after calculating median and proceed to next iter
end
y(y==0)=NaN;
output1(k)=1.1926*nanmedian(y);
end
for k=1:m
for i=1:m
output(i)=abs(H(k,i))/output1(i);
end
PS(k,1)=max(output);
end
Even after making the suggestions in comments, the computation time is still high. Without pre-initialising, - 250s With pre-initialising - 250s After changing namedian to median - 200s (recent)
  4 commentaires
Guillaume
Guillaume le 20 Fév 2018
Modifié(e) : Guillaume le 20 Fév 2018
Also I'm fairly certain that your code contains a bug because of the if j~=i because you never erase x. So when j == i you reuse the x(j) value calculated in a previous iteration. For example at the last step of the loop, the first m-1 elements of x are those calculated for j=1:m-1 and i = m, but the last element is the one calculated at the previous i step, hence j = m and i = m-1
%at step k = m, j=m, x is:
x = [abs(H(1:m-1, m) + H(m, m)); abs(H(m-1, m) + H(m, m))].'
If you had
for k=1:m
for i=1:m
x = zeros(1, m);
for j=1:m
%...
You'd get a very different result
SanthoshKumar C
SanthoshKumar C le 20 Fév 2018
Thanks @Guillaume for noting it.. Now i cleared x.. Updated code in question.

Connectez-vous pour commenter.

Réponse acceptée

Andrei Bobrov
Andrei Bobrov le 20 Fév 2018
Modifié(e) : Andrei Bobrov le 21 Fév 2018
a = abs(H + permute(H,[3,2,1])).*permute(diag(nan(m,1))+ones(m),[1,3,2]);
a(a == 0) = nan;
b = 1.1926*median(median(a,3,'omitnan'));
PS = max(abs(H./b(:)'),[],2);
other variant
m = 1000;
H = rand(m);
b = zeros(m);
for k = 1:m
a = abs(H(:,k) + H(:,k).');
% a = abs(bsxfun(@plus,H(:,k),H(:,k).')); - for MATLAB <= R2016a
a(1:m+1:end) = nan;
a(a == 0) = nan;
b(:,k) = median(a,2,'omitnan');
end
c = 1.1926*median(b);
PS = max(abs(H./c(:)'),[],2);
  9 commentaires
Andrei Bobrov
Andrei Bobrov le 21 Fév 2018
Excuse me! My typo! I'm fixed my "other variant". Please use his.
SanthoshKumar C
SanthoshKumar C le 21 Fév 2018
@Andrei Bobrov.. After changing @sum to @plus, it worked... Thanks a lot

Connectez-vous pour commenter.

Plus de réponses (1)

Jos (10584)
Jos (10584) le 20 Fév 2018
A few observations:
  1. you should pre-allocate x, y and output before the loops
  2. H(i,k) + H(j,k) equals H(j,k)+H(i,k), so you can half the computation time by having j running from i+1 to m.
  3. this will also make the "if i~=j" redundant!
  4. after removing all zeros from x using mask, the statement x(x==0) = NaN not needed!
  5. therefore you can use the faster median rather than nanmedian
  2 commentaires
SanthoshKumar C
SanthoshKumar C le 20 Fév 2018
In snapshot, Without pre-initialising, - 251s With pre-initialising - 250s After changing namedian to median - 200s
But i cannot use your suggestion 2 and 3, as for calulating median y, I need all the data points of x from 1:m.. Please let me know if you feel otherwise.
SanthoshKumar C
SanthoshKumar C le 20 Fév 2018
Modifié(e) : SanthoshKumar C le 20 Fév 2018
This is the modified code after the suggestions 1, 4 and 5.
m=1000;
H=rand(m);
rng default;
x=zeros(m,1);
y=zeros(m,1);
output1 = zeros(m,1);
output = zeros(m,1);
PS = zeros(m,1);
for k=1:m
for i=1:m
for j=1:m
if j~=i
x(j)=abs(H(i,k)+H(j,k));
end
end
mask=x~=0; % mark the non-zero elements
x=x(mask); % keep the non-zero elements
y(i)=median(x);
x=zeros(m,1); % Clearing x after calculating median and proceed to next iter
end
y(y==0)=NaN;
output1(k)=1.1926*nanmedian(y);
end
for k=1:m
for i=1:m
output(i)=abs(H(k,i))/output1(i);
end
PS(k,1)=max(output);
end

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by