how to calculate the distances between points coordinates and the arbitrary reference point using loops?

7 vues (au cours des 30 derniers jours)
This solution is solved before within a little change, They have calculated the distances between pairwise coordinate. as you can see inside the link below:
But in my question the X and Y have points inside which are increase sequentially. For example:
Let us consider:
X = [0 2 4 6; 0 2 4 6; 0 2 4 6]; % and
Y = [0 0 0 0; 2 2 2 2; 4 4 4 4; 6 6 6 6];
all of the points inside X and Y are due to the geometry of my model configuration. Let consider a reference point which is inside the model.I need to find the distance between all points and reference point. I know that I should use a loop for the sequential changes but I don't know how?
I should note that the configuration may be changed.
Thank you
Sanaz

Réponses (1)

Rik
Rik le 25 Fév 2018
If X and Y contain the coordinates of your sample points, then the code below will give you the Euclidean distance between the fixed point and the sample points.
F_x=3;F_y=3;%coordinates of the fixed point
E_distance=sqrt((X-F_x).^2+(Y-F_y).^2);
I don't really see the connection to the question you linked to, so please leave a comment if this isn't what you mean.
  8 commentaires
Sanaz Kb
Sanaz Kb le 26 Fév 2018
Modifié(e) : Sanaz Kb le 1 Mar 2018
Dear all thank you in advance for your useful answers. Now, I have found my solution by myself. In below I put the code and I hope it would be helpful for the users.
clc clear all format long
pos_x = 4; % number of the position in x coordinate
pos_y = 3; % number of the position in y coordinate
u = []
v = []
for i = 1:pos_x
u = [u, 2*(i-1)];
X = repmat(u,pos_y,1).';
v = [v,2*(i-1)];
Y = repmat(v,pos_y,1).';
end
n = size(X,2);
m = size(Y,2);
D = zeros(n,m);
xo = 0.5; % reference point x coordiante
yo = 0.5; % reference point y coordinate
for ii = 1:n
for jj = 1:m
D(ii,jj) = sum(sqrt((xo-X(ii)).^2 + (yo-Y(jj)).^2));
end
end
Rik
Rik le 9 Mar 2018
You can optimize your code like this:
pos_x = 4; % number of the position in x coordinate
pos_y = 3; % number of the position in y coordinate
u = [];
v = [];
for i = 1:pos_x
u = [u, 2*(i-1)];
X = repmat(u,pos_y,1).';
v = [v,2*(i-1)];
Y = repmat(v,pos_y,1).';
end
n = size(X,2);
m = size(Y,2);
D = zeros(n,m);
xo = 0.5; % reference point x coordiante
yo = 0.5; % reference point y coordinate
x_elem=X(1:n);
y_elem=Y(1:m);
[X2,Y2]=meshgrid(x_elem,y_elem);
D=hypot(xo-X2,yo-Y2);
But are you sure you don't mean something like the code below? Because your code results in a D that is not described by pos_x or pos_y.
pos_x = 4; % number of the position in x coordinate
pos_y = 3; % number of the position in y coordinate
xo = 0.5; % reference point x coordiante
yo = 0.5; % reference point y coordinate
u=0:2:(2*(pos_x-1));
v=0:2:(2*(pos_y-1));
[X,Y]=meshgrid(u,v);
D=hypot(xo-X,yo-Y);
If this solves your question, please consider marking it as accepted answer.

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by