Help needed to decrease computational time by removing for loops

1 vue (au cours des 30 derniers jours)
Nikhil
Nikhil le 1 Mar 2018
Hello Everyone, I have written following 40 lines of matlab code. It is working fine. Only problem is computational costs is very high for nx=1024 and ny=1024 number of points. I believe it is because of the multiple for loops that I have used. Can anybody please suggest me better coding practice to minimize computational time for this code when nx=1024?
tic
nx=512+1;
ny=nx;
dx=(2-(-2))/(nx-1);
dy=dx;
x=-2:dx:2;
y=-2:dy:2;
[Y,X]=meshgrid(x,y);
A=ones(nx,ny);
P=sqrt(A-X.^2-Y.^2);
P=real(P);
Hact=zeros(nx,ny);
error=0;
for i=1:1:(length(X)+1)/2
for j=1:1:(length(Y)+1)/2
Xp=X+(-X(i,j)+dx/2)*A;
Yp=Y+(-Y(i,j)+dy/2)*A;
Xm=X+(-X(i,j)-dx/2)*A;
Ym=Y+(-Y(i,j)-dy/2)*A;
E1=(Xp).*log((Yp+sqrt(Yp.^2+Xp.^2))./(Ym+sqrt(Ym.^2+Xp.^2)));
E2=(Xm).*log((Ym+sqrt(Ym.^2+Xm.^2))./(Yp+sqrt(Yp.^2+Xm.^2)));
E3=(Yp).*log((Xp+sqrt(Xp.^2+Yp.^2))./(Xm+sqrt(Xm.^2+Yp.^2)));
E4=(Ym).*log((Xm+sqrt(Ym.^2+Xm.^2))./(Xp+sqrt(Xp.^2+Ym.^2)));
K=(2/pi^2)*(E1+E2+E3+E4);
G(i,j)=sum(sum(K.*P));
end
end
et=toc;
I1=G(:,1:end-1);
I1=fliplr(I1);
I2=G(1:end-1,:);
I2=flipud(I2);
I3=G(1:end-1,1:end-1);
I3=rot90(I3,2);
D=[G I1;I2 I3];
Ho=(-1)*A;
H=Ho+0.5*X.^2+0.5*Y.^2+D;
for i=1:1:nx
for j=1:1:ny
if (X(i,j)^2+Y(i,j)^2 <= 1)
error=error+dx*dy*abs(H(i,j)-0);
end
end
end

Réponses (2)

Seyedali Mirjalili
Seyedali Mirjalili le 2 Mar 2018
You can use the concept of vectorization. Here is an example:
With for loop:
for k = 1 : 10
a(k) = k ^ 2;
end
Vectorized version:
k = 1 : 10;
a = k .^ 2
Good luck

Seyedali Mirjalili
Seyedali Mirjalili le 2 Mar 2018
By the way, if you want to check the speed, just write:
tic
// code fragment for either for loop of vectoriaed version.
toc

Catégories

En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by