result of simplify function

3 vues (au cours des 30 derniers jours)
Huang Meng
Huang Meng le 24 Mar 2011
Hi:
I am trying to use simplify() function.
If I define t1= sym('x+1/y+1/(x*y)=3'); t2=simplify(t1); then is it equivalent to t2=simplify('x+1/y+1/(x*y)-3')?
Thanks

Réponses (1)

Walter Roberson
Walter Roberson le 24 Mar 2011
No. The first one creates a symbolic equation that is then simplified. The second one creates a symbolic expression that is then simplified.
The first one would come out like, (x^2*y+x+1)/(x*y) = 3 The second one would come out like, (x^2*y+x+1-3*x*y)/(x*y)
If you are looking for solve() instead of simplify(), then it is over here
  3 commentaires
Walter Roberson
Walter Roberson le 24 Mar 2011
Sorry, I'm working on theory here; theory and knowledge of a pretty similar computer program. I do not have the Symbolic Toolbox myself.
In the other program, the simply()'d version is:
-(1/54975581388800000000000000000000000000000000000000000000000000000000)*(-12884901888*C0^2*L0-2794227756815616035186997904500000000000000000000000*C0^5*L0^2-2147483648*L0^3+249156101152561171875*C0^3*L0-51870368705054935049759770874700000000000000000000000000000000*C0^5*L0^3+179398829795274998423971062520002440000000000000000000000000000000000000*C0^6*L0^3-6867007664798629656218750000000*C0^2*L0^3+1572261156935652588441050351000000000000000000000000*C0^4*L0^3+118140407280496373375428750000000000000000*C0^3*L0^3+83052033717520390625*C0*L0^3+2147483648*C0^3+1279185939839683623343750000000*C0^4*L0-332208134870081562500*C0^2*L0^2+157527740484329598232661250000000000000000*C0^4*L0^2-1967664285161703581260147853808461750080000000000000000000000000000000000000000000*C0^6*L0^4+610983299939981723372973776750000000000000000000000*C0^3*L0^4-836338272320550456725829424169330388000000000000000000000000000000000000*C0^5*L0^4+41496555030766781312265422860700000000000000000000000000000000*C0^4*L0^4+2036548401159578319890625000000*C0*L0^4-78761711009064468996703750000000000000000*C0^2*L0^4+2272087383959684089640625000000*C0^3*L0^2+35057939070727718549409982158352393929892480000000000000000000000000000000000000000000000000*C0^7*L0^4+10737418240*C0*L0^2)/(C0^7*L0^4) = 1055078633212981/17179869184
Walter Roberson
Walter Roberson le 24 Mar 2011
[Trying that again!]
Sorry, I'm working on theory here; theory and knowledge of a pretty similar computer program. I do not have the Symbolic Toolbox myself.
In the other program, the simply()'d version is equivalent to the following:
-(1/549755813888/10^56)*(-12884901888*C0^2*L0 - 2794227756815616035186997904500000000000000000000000*C0^5*L0^2 - 2147483648*L0^3 + 249156101152561171875*C0^3*L0 - 51870368705054935049759770874700000000000000000000000000000000*C0^5*L0^3 + 17939882979527499842397106252000244*10^37*C0^6*L0^3 - 6867007664798629656218750000000*C0^2*L0^3 + 1572261156935652588441050351000000000000000000000000*C0^4*L0^3 + 118140407280496373375428750000000000000000*C0^3*L0^3 + 83052033717520390625*C0*L0^3 + 2147483648*C0^3+1279185939839683623343750000000*C0^4*L0 - 332208134870081562500*C0^2*L0^2 + 157527740484329598232661250000000000000000*C0^4*L0^2 - 1967664285161703581260147853808461750080000000000000000000000000000000000000000000*C0^6*L0^4 + 610983299939981723372973776750000000000000000000000*C0^3*L0^4 - 836338272320550456725829424169330388*10^36*C0^5*L0^4 + 41496555030766781312265422860700000000000000000000000000000000*C0^4*L0^4 + 2036548401159578319890625000000*C0*L0^4 - 78761711009064468996703750000000000000000*C0^2*L0^4 + 2272087383959684089640625000000*C0^3*L0^2 + 3505793907072771854940998215835239392989248*10^49*C0^7*L0^4 + 10737418240*C0*L0^2) / (C0^7*L0^4) = 1055078633212981/17179869184
with the difference that everywhere 10^ appears in the above, the other program had all of the zeros in-place. I had to convert to 10^N notation in order to fit some of the numbers in the width of the comment box, as Matlab Answers does not have a scroll-bar for comments.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Just for fun dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by