Matlab: compute Moore curve help.

1 vue (au cours des 30 derniers jours)
Lam Chun Ting
Lam Chun Ting le 18 Mai 2012
Commenté : DGM le 27 Juin 2025
Compute the fractal curve based on the following L system
Moore curve, 4 steps
Axiom: XFX+F+XFX
Production rules:
Newx=-YF+XFX+FYNewy=+
XF-YFY-FX+
Constants: α= π/2; θ=π/2
The following is my answer for Moore curve.But I know it's not a right curve, Because the picture is not same as what I have seen on wikipedia. I really don't know where am I go wrong. May anyone help me to slove this please? Many thanks for helping!!!
function [X,Y]=Moore_curve(Lmax)
Axiom='XFX+F+XFX';
Newf='F';
Newx='-YF+XFX+FY';
Newy='+XF-YFY-FX+';
theta=pi/2;
alpha=pi/2;
p=[0;0];
p=Coord(p,Lmax,Axiom,Newf,Newx,Newy,alpha,theta);
M=size(p,2);
X=p(1:1,1:M);
Y=p(2:2,1:M);
figure(1);
plot(X,Y,'Color','k');
set(gca,'xtick',[],'ytick',[]);
set(gca,'XColor','w','YColor','w');
function z=Coord(p,Lmax,Axiom,Newf,Newx,Newy,alpha,theta)
Rule=Moore_syst(Lmax,Axiom,Newf,Newx,Newy,1,'');
M=length(Rule);
for i=1:M
Tmp=p(1:2,size(p,2):size(p,2));
if Rule(i)=='F'
R=[cos(alpha);sin(alpha)];
R=R/(2^Lmax);
Tmp=Tmp+R;
p=cat(2,p,Tmp);
end
if Rule(i)=='+'
alpha=alpha+theta;
end
if Rule(i)=='-'
alpha=alpha-theta;
end;
end
z=p;
function z1=Moore_syst(Lmax,Axiom,Newf,Newx,Newy,n,tmp)
if n<=Lmax
if n==1
tmp=Axiom;
end
M=length(tmp);
tmp1='';
for i=1:M
if tmp(i)=='F'
tmp1=strcat(tmp1,Newf);
end
if tmp(i)=='X'
tmp1=strcat(tmp1,Newx);
end
if tmp(i)=='Y'
tmp1=strcat(tmp1,Newy);
end
if not(tmp(i)=='F') &&not(tmp(i)=='X') &&not(tmp(i)=='Y')
tmp1=strcat(tmp1,tmp(i));
end
end
tmp=tmp1;
n=n+1;
tmp=Moore_syst(Lmax,Axiom,Newf,Newx,Newy,n,tmp);
end
z1=tmp;

Réponses (1)

Henning U. Voss
Henning U. Voss le 1 Août 2023
At the end of line 4 is a minus sign missing. It's apparently already missing in the task description... That's it.
Hope it's not too late.
  1 commentaire
DGM
DGM le 27 Juin 2025
So we can have an example, I just applied the bugfix and fixed the formatting so that it's readable.
[X,Y] = Moore_curve(3);
function [X,Y] = Moore_curve(Lmax)
Axiom = 'XFX+F+XFX';
Newf = 'F';
Newx = '-YF+XFX+FY-';
Newy = '+XF-YFY-FX+';
theta = pi/2;
alpha = pi/2;
p = [0;0];
p = Coord(p,Lmax,Axiom,Newf,Newx,Newy,alpha,theta);
M = size(p,2);
X = p(1:1,1:M);
Y = p(2:2,1:M);
figure(1);
plot(X,Y,'Color','k');
set(gca,'xtick',[],'ytick',[]);
set(gca,'XColor','w','YColor','w');
end
function z = Coord(p,Lmax,Axiom,Newf,Newx,Newy,alpha,theta)
Rule = Moore_syst(Lmax,Axiom,Newf,Newx,Newy,1,'');
M = length(Rule);
for i = 1:M
Tmp = p(1:2,size(p,2):size(p,2));
if Rule(i) == 'F'
R = [cos(alpha);sin(alpha)];
R = R/(2^Lmax);
Tmp = Tmp+R;
p = cat(2,p,Tmp);
end
if Rule(i) == '+'
alpha = alpha+theta;
end
if Rule(i) == '-'
alpha = alpha-theta;
end
end
z = p;
end
function z1 = Moore_syst(Lmax,Axiom,Newf,Newx,Newy,n,tmp)
if n <= Lmax
if n == 1
tmp = Axiom;
end
M = length(tmp);
tmp1 = '';
for i = 1:M
if tmp(i) == 'F'
tmp1 = strcat(tmp1,Newf);
end
if tmp(i) == 'X'
tmp1 = strcat(tmp1,Newx);
end
if tmp(i) == 'Y'
tmp1 = strcat(tmp1,Newy);
end
if not(tmp(i) == 'F') && not(tmp(i) == 'X') && not(tmp(i) == 'Y')
tmp1 = strcat(tmp1,tmp(i));
end
end
tmp = tmp1;
n = n+1;
tmp = Moore_syst(Lmax,Axiom,Newf,Newx,Newy,n,tmp);
end
z1 = tmp;
end

Connectez-vous pour commenter.

Catégories

En savoir plus sur Fractals dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by