Finding Particular Solution of a Second Order Differential equation with dsolve

18 vues (au cours des 30 derniers jours)
The homogenous equation: 28^(e^(−2x)) − 18(e(−3x))
I found the homogenous solution to the equation, however I am not sure how to find the particular solution when the differential equation is equal to 8. I tried using the dsolve function, however it doesn't give me the correct solution. Apparently the particular solution is supposed to be 4/3.
y2 = dsolve('D2v + 5*Dv + 6*v = 8')

Réponse acceptée

Birdman
Birdman le 19 Mar 2018
Well, it should give you the correct solution. In my computer it worked:
>>syms v(x)
eq=diff(v,2)+5*diff(v)+6*v==8;
v(x)=dsolve(eq)
ans =
C1*exp(-2*x) + C2*exp(-3*x) + 4/3
  2 commentaires
Jaryd Kynaston-Blake
Jaryd Kynaston-Blake le 8 Juil 2022
Modifié(e) : Jaryd Kynaston-Blake le 8 Juil 2022
now how can get values for C1 & C2 using:
V(0) = V0 % just an arbitrary variable
& t(0) = 0
Sincerely.
Torsten
Torsten le 8 Juil 2022
syms v(x) v0
eq = diff(v,2)+5*diff(v)+6*v==8;
Dv = diff(v,x);
cond = [v(0)==v0, Dv(0)==0];
vSol(x) = dsolve(eq,cond)
vSol(x) = 

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by