Finding probability distributions associated with a cross-validated svm using bayesopt
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am finding difficulty in computing the probability of the predictions after training a Support Vector Machine with kfold cross validation and optimizing the hyperparameters using Bayesian optimization.
This is the code I am using
data = [S' U']'; size1 = size(S,1); size2 = size(U,1); theclass = ones((size1+size2),1); theclass(size1+1:end) = -1;
%% Preparing Cross Validation
c = cvpartition((size1+size2),'KFold',100);
%% Optimizing the SVM Classifier
opts = struct('Optimizer','bayesopt','ShowPlots',true,'CVPartition',c,... 'AcquisitionFunctionName','expected-improvement-plus');
svm = fitcsvm(data,theclass,'KernelFunction','rbf',... 'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',opts)
Any help is appreciated
0 commentaires
Réponses (1)
Don Mathis
le 5 Avr 2018
Modifié(e) : Don Mathis
le 5 Avr 2018
To get posterior probabilities on a test set using a trained SVM, you can consult this Documentation page:
0 commentaires
Voir également
Catégories
En savoir plus sur Classification dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!