Equation: X”-6x’+13x = t+3sin(t) Initial Value: x(0)=1 t є [0,1] Method: Runge-Kutta II Step Sizes: h=0.1 , h=0.03

1 vue (au cours des 30 derniers jours)
I want to solve it by the Matlab only. but facing the Problem . Can someone Please help me out?
  3 commentaires
Tariq Malik
Tariq Malik le 30 Mar 2018
Modifié(e) : James Tursa le 30 Mar 2018
This is the code that I am using.
intmin=0;
intmax=1;
numnodes=5;
f=@(t,x) t+3*(sin(t));
inival=1;
h=(intmax-intmin)/(numnodes-1);
t=zeros(1,numnodes);
x=zeros(1,numnodes);
X=zeros(1,numnodes);
t(1)=intmin;
x(1)=inival;
X(1)=inival;
for i=2:numnodes;
t(i)=t(i-1)+h;
k1=f(t(i-1),x(i-1));
k2=f(t(i-1)+h/2,x(i-1)+(h/2)*k1);
x(i)= x(i-1)+h*k2;
X(i)=X(i-1)+h*f(t(i-1),X(i-1));
end
figure
plot(t,x,'.-',t,X,'-*')
hold on
syms t x(t) sym(f)
eqn=diff(x,t)==f(t,x(t));
cond1=x(intmin)==inival;
odesol=dsolve(eqn,cond1);
odesolfun=@(t) eval(odesol);
tt=linspace(intmin,intmax,100*(ceil(intmax-intmin)));
xx=odesolfun(tt);
plot(tt,xx,'r')
hold off
Tariq Malik
Tariq Malik le 30 Mar 2018
Am I making the Problem in regarding to typing the Equation?

Connectez-vous pour commenter.

Réponse acceptée

Abraham Boayue
Abraham Boayue le 31 Mar 2018
Modifié(e) : Abraham Boayue le 31 Mar 2018
The first thing you need to do is to write the ode as two first order equations and use the code below. You will be required to supply two initial conditions for the 1s order equations. Use the one that you are given plus another of your choice.
function [t,x,y,N] = Runge2_2eqs(f1,f2,to,tfinal,xo,yo,h)
% This function implements the Rk2 method.
t = to;
N = ceil((tfinal-to)/h);
x = zeros(1,N);
y = zeros(1,N) ;
x(1) = xo;
y(1) = yo;
for i = 1:N
t(i+1) = t(i)+h;
Sx1 = f1(t(i),x(i),y(i));
Sy1 = f2(t(i),x(i),y(i));
Sx2 = f1(t(i)+h, x(i)+Sx1*h, y(i)+Sy1*h);
Sy2 = f2(t(i)+h, x(i)+Sx1*h, y(i)+Sy1*h);
x(i+1) = x(i) + h/2*(Sx1+Sx2);
y(i+1) = y(i) + h/2*(Sy1+Sy2);
end
end
This is the mfile.
xo = 1;
yo = 0;
h = [.1 0.03];
to = 0;
tfinal = 20;
M = ceil((tfinal-to)/h(2));
dx1 = @(t,x1,x2) x2;
dx2 = @(t,x1,x2) 6*x2 -13*x1 + t + 3*sin(t);
% When you reduce the equation to two first order, x will be the solution
% of the ode, i.e x'' and y is its derivative, x'.
for i = 1: length(h)
if (i== 1) % This for the case when h = 0.1
[t,x,y,N] = Runge2_2eqs(dx1,dx2,to,tfinal,xo,yo,h(i));
y1 = x;
y2 = y;
else % and for the case when h = 0.03
[t,x,y,N] = Runge2_2eqs(dx1,dx2,to,tfinal,xo,yo,h(1));
x3 = x;
x4 = y;
end
end
t1 = t(1):(t(end)-t(1))/(M-1):t(end);
figure(1);
subplot(121)
plot(t1,y1, '-o')
hold on
plot(t1,y2,'-o')
legend('Dfx1','Dfx2')
title('Solution to two systems of ODEs using RK2, h= 0.1')
xlabel('x')
ylabel('y')
xlim([to tfinal])
grid
subplot(122)
plot(t,x3,'linewidth',2,'color','b')
hold on
plot(t,x4,'linewidth',2,'color','r')
legend('Dfx1','Dfx2')
title('Solution to two systems of ODEs using RK2, h = 0.03')
xlabel('x')
ylabel('y')
xlim([to tfinal])
grid
% Using ode 45 just to prove that the solution with RK2 is correct.
F = @(t,y) [ y(2); (6*y(2) -13*y(1) + t + 3*sin(t)) ];
t0 = 0;
tf = 20;
delta = (tf-t0)/(201-1);
tspan = t0:delta:tf;
ic = [1 0];
[t,y] = ode45(F, tspan, ic);
figure
plot(t,y(:,1),'-o')
hold on
plot(t,y(:,2),'-o')
a = title('Using ode45');
legend('x','x_{prime}');
set(a,'fontsize',14);
a = ylabel('y');
set(a,'Fontsize',14);
a = xlabel('t [0 20]');
set(a,'Fontsize',14);
xlim([t0 tf])
grid
grid minor;
  1 commentaire
Tariq Malik
Tariq Malik le 7 Avr 2018
Modifié(e) : Walter Roberson le 8 Avr 2018
intmin=0;
intmax=1;
inival1=0;
inival2=0;
numnodes = 10;
t(1) = intmin;
x1(1)= inival1;
x2(1)= inival2;
t =zeros(1,numnodes);
x1=zeros(1,numnodes);
x2=zeros(1,numnodes);
h=(intmax-intmin)/(numnodes-1);
f1 = @(t,x1,x2) x2;
f2 = @(t,x1,x2) 6*x2-13*x1+t+3*sin(t);
numnodes1=300;
a=zeros(1,numnodes1);
b1=zeros(1,numnodes1);
b2=zeros(1,numnodes1);
a(1)=intmin;
b1(1)=inival1;
b2(1)=inival2;
g=(intmax-intmin)/(numnodes1-1);
F1 = @(a,b1,b2) b2;
F2 = @(a,b1,b2) 6*b2-13*b1+a+3*sin(a);
for i = 2:numnodes
t(i) = t(i-1)+h;
k1 = f2(t(i-1),x1(i-1),x2(i-1));
k2 = f2(t(i-1)+h/2,x1(i-1)+(h/2)*k1,x2(i-1)+(h/2)*k1);
k3 = f2(t(i-1)+h/2, x1(i-1)+(h/2)*k2,x2(i-1)+(h/2)*k2);
x1(i) = x1(i-1)+(h/6)*(k1+4*k2+k3);
x2(i) = x2(i-1)+(h/6)*(k1+4*k2+k3);
end
for i = 2:numnodes1
a(i) = a(i-1)+g;
k1 = F2(a(i-1),b1(i-1),b2(i-1));
k2 = F2(a(i-1)+g/2,b1(i-1)+(g/2)*k1,b2(i-1)+(g/2)*k1);
k3 = F2(a(i-1)+g/2, b1(i-1)+(g/2)*k2,b2(i-1)+(g/2)*k2);
b1(i) = b1(i-1)+(g/6)*(k1+4*k2+k3);
b2(i) = b2(i-1)+(g/6)*(k1+4*k2+k3);
end
figure
plot(t,x1,'.-',t,x2,'-*')
hold on
syms t x(t)
sym(x)
eqn=diff(x,t,2) == diff(x,t)-13*x+t+3*sin(t);
cond1==1;
cond2==0;
odesol=dsolve(eqn,cond1,cond2);
odesolfun=@(t) eval(odesol);
tt=linspace(intmin,intmax,100*(ceil(intmax-intmin)));
xx=odesolfun(tt);
legend("Runge-Kutta 2", "0.1", "Exact");
plot(tt,xx,'r')
hold off

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Programming dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by