Equation: X”-6x’+13x = t+3sin(t) Initial Value: x(0)=1 t є [0,1] Method: Runge-Kutta II Step Sizes: h=0.1 , h=0.03
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Tariq Malik
le 30 Mar 2018
Modifié(e) : Walter Roberson
le 8 Avr 2018
I want to solve it by the Matlab only. but facing the Problem . Can someone Please help me out?
3 commentaires
Réponse acceptée
Abraham Boayue
le 31 Mar 2018
Modifié(e) : Abraham Boayue
le 31 Mar 2018
The first thing you need to do is to write the ode as two first order equations and use the code below. You will be required to supply two initial conditions for the 1s order equations. Use the one that you are given plus another of your choice.
function [t,x,y,N] = Runge2_2eqs(f1,f2,to,tfinal,xo,yo,h)
% This function implements the Rk2 method.
t = to;
N = ceil((tfinal-to)/h);
x = zeros(1,N);
y = zeros(1,N) ;
x(1) = xo;
y(1) = yo;
for i = 1:N
t(i+1) = t(i)+h;
Sx1 = f1(t(i),x(i),y(i));
Sy1 = f2(t(i),x(i),y(i));
Sx2 = f1(t(i)+h, x(i)+Sx1*h, y(i)+Sy1*h);
Sy2 = f2(t(i)+h, x(i)+Sx1*h, y(i)+Sy1*h);
x(i+1) = x(i) + h/2*(Sx1+Sx2);
y(i+1) = y(i) + h/2*(Sy1+Sy2);
end
end
This is the mfile.
xo = 1;
yo = 0;
h = [.1 0.03];
to = 0;
tfinal = 20;
M = ceil((tfinal-to)/h(2));
dx1 = @(t,x1,x2) x2;
dx2 = @(t,x1,x2) 6*x2 -13*x1 + t + 3*sin(t);
% When you reduce the equation to two first order, x will be the solution
% of the ode, i.e x'' and y is its derivative, x'.
for i = 1: length(h)
if (i== 1) % This for the case when h = 0.1
[t,x,y,N] = Runge2_2eqs(dx1,dx2,to,tfinal,xo,yo,h(i));
y1 = x;
y2 = y;
else % and for the case when h = 0.03
[t,x,y,N] = Runge2_2eqs(dx1,dx2,to,tfinal,xo,yo,h(1));
x3 = x;
x4 = y;
end
end
t1 = t(1):(t(end)-t(1))/(M-1):t(end);
figure(1);
subplot(121)
plot(t1,y1, '-o')
hold on
plot(t1,y2,'-o')
legend('Dfx1','Dfx2')
title('Solution to two systems of ODEs using RK2, h= 0.1')
xlabel('x')
ylabel('y')
xlim([to tfinal])
grid
subplot(122)
plot(t,x3,'linewidth',2,'color','b')
hold on
plot(t,x4,'linewidth',2,'color','r')
legend('Dfx1','Dfx2')
title('Solution to two systems of ODEs using RK2, h = 0.03')
xlabel('x')
ylabel('y')
xlim([to tfinal])
grid
% Using ode 45 just to prove that the solution with RK2 is correct.
F = @(t,y) [ y(2); (6*y(2) -13*y(1) + t + 3*sin(t)) ];
t0 = 0;
tf = 20;
delta = (tf-t0)/(201-1);
tspan = t0:delta:tf;
ic = [1 0];
[t,y] = ode45(F, tspan, ic);
figure
plot(t,y(:,1),'-o')
hold on
plot(t,y(:,2),'-o')
a = title('Using ode45');
legend('x','x_{prime}');
set(a,'fontsize',14);
a = ylabel('y');
set(a,'Fontsize',14);
a = xlabel('t [0 20]');
set(a,'Fontsize',14);
xlim([t0 tf])
grid
grid minor;
1 commentaire
Plus de réponses (0)
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!