Info

Cette question est clôturée. Rouvrir pour modifier ou répondre.

How can I include the derivative of a function as an input to a function handle?

1 vue (au cours des 30 derniers jours)
Evan Tsiklidis
Evan Tsiklidis le 3 Avr 2018
Clôturé : MATLAB Answer Bot le 20 Août 2021
Consider the following code snippet corresponding to the solution to the system of ordinary differential equations
da/dt = t*a/(a^2+b^2 + 1)
db/dt = (b-a)^2/(b^2+c^2+1)
dc/dt = t^2*c^2/(a^2+c^2+1)
clear;clc;
initial_conditions = [1 0 -1];
F=@(t,y) [t.*y(1)./(y(1).^2+y(2).^2+1);
(y(2)-y(1)).^2./(y(2).^2+y(3).^2+1);
t.^2.*y(3).^2./(y(1).^2+y(3).^2+1)];
[t y]=ode23tb(F,[0 2], initial_conditions);
plot(t, y(:,1), 'r', t, y(:,2), 'g', t, y(:,3), 'b')
where y(1) corresponds to a, y(2) corresponds with b, and y(3) corresponds with c. How can I include the additional differential equation, dz/dt = 5*da/dt, with z(0) = 2 ? I am not sure how to include this in the function handle since It's the derivative of the output of the first handle with respect to t, and not one of the state variables as the other equations are.
Thanks.

Réponses (1)

James Tursa
James Tursa le 3 Avr 2018
Modifié(e) : James Tursa le 3 Avr 2018
Currently you have a 3-element state vector, with the states being a, b, c. You simply use a 4-element state vector with the 4th state being z. Then your F would be:
F=@(t,y) [t.*y(1)./(y(1).^2+y(2).^2+1);
(y(2)-y(1)).^2./(y(2).^2+y(3).^2+1);
t.^2.*y(3).^2./(y(1).^2+y(3).^2+1);
5*t.*y(1)./(y(1).^2+y(2).^2+1)]; % <-- 5*da/dt
and your initial conditions would be:
initial_conditions = [1 0 -1 2]; % <-- added z(0)

Cette question est clôturée.

Tags

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by