ode45 for the shooting method.
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I want to predict a constant for the target height for the given ode problem. The target height is highly dependent on the constant alpha. Some one told me to use shooting /iterative methods but I am new for such a method. I need your help.
zspan=[0,400];
v0mat = [1 0.01 1];
zsol = {};
v1sol = {};
v2sol = {};
v3sol = {};
for k=1:size(v0mat,1)
v0=v0mat(k,:);
[z,v]=ode45(@rhs,zspan,v0);
zsol{k}=z;
v1sol{k}=v(:,1);
v2sol{k}=v(:,2);
v3sol{k}=v(:,3);
end
for r=1:length(v2sol)
q(r)=r;
end
for k1 = 1:length(v2sol)
zsol04(k1) = interp1(v2sol{k1}, zsol{k1}, 0.4);
end
figure()
scatter(q,zsol04,'p')
xlabel('q')
ylabel('Height')
function parameters=rhs(z,v)
alpha=0.08116;
db= 2*alpha-(v(1).*v(3))./(2*v(2).^2);
dw= (v(3)./v(2))-(2*alpha*v(2)./v(1));
dgmark= -(2*alpha*v(3)./v(1));
parameters=[db;dw;dgmark];
end
7 commentaires
Torsten
le 9 Avr 2018
Please read my answer again:
Use "bvp4c" with three boundary conditions at h=0, one boundary condition as v2(height)=0.4 and a free parameter alpha.
Best wishes
Torsten.
Réponses (0)
Voir également
Catégories
En savoir plus sur Global or Multiple Starting Point Search dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!