how to evaluate a double integral using the trapezoidal rule equation?
24 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Susan Santiago
le 15 Avr 2018
Réponse apportée : Apoorv Rajput
le 7 Oct 2021
Here's what I have so far
function [ I ] = myTrapz2D( f, x0, xn, y0, yn, nx, ny )
dx = (xn - x0)/nx;
dy = (yn - y0)/ny;
i = 1;
sumx = zeros(nx,1);
sumy =zeros(ny,1);
while i < nx
xi = x0 + i*dx;
sumx(i) = f(xi);
i = i+1;
end
sumx = sum(sumx);
Ix = ((dx)/2)*(f(x0)+f(xn)+(2*sumx));
fd = Ix(y);
while i < ny
yi = y0 + i*dy;
sumy(i) = fd(yi);
i = i+1;
end
sumy = sum(sumy);
I =((dy)/2)*(fd(y0)+fd(yn)+(2*sumy));
end
not sure if it's correct at all but it has to be solved using some variation of the equation for I that I used. I keep getting an error that there aren't enough input arguments. There are my input arguments: f = @(x,y) x.^2 - (2*y.^2) + (x.*y.^3); x0 = 0; xn = 2; y0 = -1; yn = 1; nx = 8; ny = 8;
0 commentaires
Réponse acceptée
Torsten
le 16 Avr 2018
You don't need to program the trapezoidal rule in two dimensions.
Just call the trapezoidal rule in one dimension twice. In the section "Multiple Numeical Integrations" under
https://de.mathworks.com/help/matlab/ref/trapz.html
is an example with the MATALB implementation of the trapezoidal rule "trapz".
Best wishes
Torsten.
Plus de réponses (1)
Apoorv Rajput
le 7 Oct 2021
function [ I ] = myTrapz2D( x0, xn, y0, yn, nx, ny )
syms f(x,y);
syms x;
syms y;
f(x,y)=exp(y-x);
dx = (xn - x0)/nx;
dy = (yn - y0)/ny;
i = 1;
sumx=0*x*y;
while i < nx
xi = x0 + i*dx;
sumx=sumx+ f(xi,y);
i = i+1;
end
Ix = ((dx)/2)*(f(x0,y)+f(xn,y)+(2*sumx));
syms fd(y);
fd(y) = Ix;
sumy=0*y;
i=1;
while i < ny
yi = y0 + i*dy;
sumy= sumy+fd(yi);
i = i+1;
end
I =((dy)/2)*(fd(y0)+fd(yn)+(2*sumy));
end
0 commentaires
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!