how can I replace the softmax layer with another classifier as svm in convolution network
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I made deep learning application that using softmax
layers = [ imageInputLayer(varSize); conv1; reluLayer;
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(4,'Stride',2);
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,64,'Padding',2,'BiasLearnRateFactor',2);
reluLayer();
maxPooling2dLayer(4,'Stride',2)
fc1;
reluLayer();
fc2;
reluLayer();
%returns a softmax layer for classification problems. The softmax layer uses the softmax activation function.
softmaxLayer()
classificationLayer()];
I want to use SVM and random forest classifiers instead of softmax. and use a deep learning for feature extraction. I hope I can get a link for a tutorial.
1 commentaire
Réponses (4)
Johannes Bergstrom
le 17 Avr 2018
Here is an example: https://www.mathworks.com/help/nnet/examples/feature-extraction-using-alexnet.html
Nagwa megahed
le 21 Avr 2022
the only possible solution is to save the extracted features by the deep model , then use this features as an input to the SVM or any other wanted classifier.
1 commentaire
Saifullah Razali
le 19 Fév 2019
hello.. just wondering.. have u got the answer yet? i have the same exact problem
0 commentaires
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!