How to calculate AUC of ROC curve from these data ?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi everyone I have my raw data that I attach in this question.These data are output from a neural network classification and I am able to plot ROC curve from them. by the code below;
figure(1)
plotroc(targets_train,outputs_train)
title({'ROC Curve of Train Set for Neural network classification'})
xlabel('False positive rate') % x-axis label
ylabel('True positive rate') % y-axis label
figure(2)
plotroc(targets_testset,outputs_test)
title({'ROC Curve of Test Set for Neural network classification'})
xlabel('False positive rate') % x-axis label
ylabel('True positive rate') % y-axis label
However, I don't have any idea, how to calculate AUC of ROC curve from these data ?.
Anyone help me,please ?
Thanks in advance
Pradya
1 commentaire
Victor Daniel Reyes Dreke
le 18 Mai 2020
Try to use the function [tpr,fpr]=roc(targets,outputs). This function outcomes are the true positive rate and false positive rate used to build the ROC Curve. Finally, trapz(fpr,tpr) will give you the area under the ROC curve
Réponses (1)
Sharmili S
le 27 Jan 2023
figure(1)
plotroc(targets_train,outputs_train)
title({'ROC Curve of Train Set for Neural network classification'})
xlabel('False positive rate') % x-axis label
ylabel('True positive rate') % y-axis label
figure(2)
plotroc(targets_testset,outputs_test)
title({'ROC Curve of Test Set for Neural network classification'})
xlabel('False positive rate') % x-axis label
ylabel('True positive rate') % y-axis label
0 commentaires
Voir également
Catégories
En savoir plus sur ROC - AUC dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!