How to calculate AUC of ROC curve from these data ?

3 vues (au cours des 30 derniers jours)
Pradya Panyainkaew
Pradya Panyainkaew le 22 Avr 2018
Hi everyone I have my raw data that I attach in this question.These data are output from a neural network classification and I am able to plot ROC curve from them. by the code below;
figure(1)
plotroc(targets_train,outputs_train)
title({'ROC Curve of Train Set for Neural network classification'})
xlabel('False positive rate') % x-axis label
ylabel('True positive rate') % y-axis label
figure(2)
plotroc(targets_testset,outputs_test)
title({'ROC Curve of Test Set for Neural network classification'})
xlabel('False positive rate') % x-axis label
ylabel('True positive rate') % y-axis label
However, I don't have any idea, how to calculate AUC of ROC curve from these data ?.
Anyone help me,please ?
Thanks in advance
Pradya
  1 commentaire
Victor Daniel Reyes Dreke
Victor Daniel Reyes Dreke le 18 Mai 2020
Try to use the function [tpr,fpr]=roc(targets,outputs). This function outcomes are the true positive rate and false positive rate used to build the ROC Curve. Finally, trapz(fpr,tpr) will give you the area under the ROC curve

Connectez-vous pour commenter.

Réponses (1)

Sharmili S
Sharmili S le 27 Jan 2023
figure(1)
plotroc(targets_train,outputs_train)
title({'ROC Curve of Train Set for Neural network classification'})
xlabel('False positive rate') % x-axis label
ylabel('True positive rate') % y-axis label
figure(2)
plotroc(targets_testset,outputs_test)
title({'ROC Curve of Test Set for Neural network classification'})
xlabel('False positive rate') % x-axis label
ylabel('True positive rate') % y-axis label

Catégories

En savoir plus sur ROC - AUC dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by