Smoothing Numerical Differentiation Result

8 vues (au cours des 30 derniers jours)
Ahmed Zankoor
Ahmed Zankoor le 23 Avr 2018
Commenté : Ahmed Zankoor le 26 Avr 2018
I want to get the derivative of this S-shaped curve this way (x*(dy/dx)) which is expected to be like the normal distribution bell-shaped curve, I used x(2:end).*diff(y)./diff(x) , gradient function and central difference method. but the result was very noisy since it is a numerical differentiation. My question, is there a way to smooth the result to get a better derivative curve?

Réponse acceptée

Jim Riggs
Jim Riggs le 23 Avr 2018
Modifié(e) : Jim Riggs le 23 Avr 2018
The attached file contains some higher-order methods for computing numerical derivatives. You can start with this. For very well behaved data, further smoothing might be achieved by curve fitting a function to the data and using the function derivative. If a more general method is desired, there are a number of ways to filter noisy data (for example, Matlab function "filter").
  4 commentaires
Ahmed Zankoor
Ahmed Zankoor le 25 Avr 2018
The problem that I can not understand is that the data I want to find the derivative for is not that noisy yet I get a bad derivative, you can see the attached figures. So I do not think it needs filtering.
Ahmed Zankoor
Ahmed Zankoor le 26 Avr 2018
I found the problem, the x variable is generated using normrnd (random variables following normal distribution) and the differences between the values vary greatly. for example dx=[.2 .01 ...] that is why when we compute the derivative its values show heavy noise.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Interpolation dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by