HELP ME SOLVE THIS ANALYTICAL SOLUTION
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens

here's the coding that i did for part a so far
clc
clear all
close all
%%Parameters of Blasius Equation
U_inf = 1;
L = 10;
mu = 1.789E-5;
rho = 1.225;
nu = mu/rho;
A = sqrt(nu/U_inf);
h = 0.01;
%%Numerical Solution of Blasius Equation Using Runge-Kutta
f1 = @(x, y1, y2, y3) y2;
f2 = @(x, y1, y2, y3) y3;
f3 = @(x, y1, y2, y3) -y1*y3;
eta = 0:h:10;
x = 0:h:10;
y1(1) = 0;
y2(1) = 0;
y3(1) = 0.4696;
for i = 1:(length(eta)-1)
a = h.*[f1(eta(i), y1(i), y2(i), y3(i)), f2(eta(i), y1(i), y2(i), y3(i)), f3(eta(i), y1(i), y2(i), y3(i))];
b = h.*[f1(eta(i), y1(i)+a(1)/2, y2(i)+a(2)/2, y3(i)+a(3)/2), f2(eta(i)+h/2, y1(i)+a(1)/2, y2(i)+a(2)/2, y3(i)+a(3)/2), f3(eta(i)+h/2, y1(i)+a(1)/2, y2(i)+a(2)/2, y3(i)+a(3)/2)];
c = h.*[f1(eta(i), y1(i)+b(1)/2, y2(i)+b(2)/2, y3(i)+b(3)/2), f2(eta(i)+h/2, y1(i)+b(1)/2, y2(i)+b(2)/2, y3(i)+b(3)/2), f3(eta(i)+h/2, y1(i)+b(1)/2, y2(i)+b(2)/2, y3(i)+b(3)/2)];
d = h.*[f1(eta(i), y1(i)+c(1), y2(i)+c(2), y3(i)+c(3)), f2(eta(i)+h, y1(i)+c(1), y2(i)+c(2), y3(i)+c(3)), f3(eta(i)+h, y1(i)+c(1), y2(i)+c(2), y3(i)+c(3))];
y3(i+1) = y3(i)+ 1/6*(a(3)+2*b(3)+2*c(3)+d(3));
y2(i+1) = y2(i)+ 1/6*(a(2)+2*b(2)+2*c(2)+d(2));
y1(i+1) = y1(i)+ 1/6*(a(1)+2*b(1)+2*c(1)+d(1));
end
%%Plotting and Visualization
figure(1)
plot(eta,y1,eta, y2, eta, y3, 'LineWidth', 2)
xlim([0 10])
title('Solution of Blasius eqution', 'FontSize', 14);
xlabel('f, f'' and f''''', 'FontSize', 20);
ylabel('\eta', 'FontSize', 20);
grid on
Legend1 = {'f(\eta)', 'f''(\eta)', 'f''''(\eta)'};
legend(Legend1, 'FontSize', 14);
using the above code solve for energy equation.
Réponses (0)
Voir également
Catégories
En savoir plus sur Signal Generation, Analysis, and Preprocessing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!