Is it possible to implement a LSTM layer after a CNN layer?

7 vues (au cours des 30 derniers jours)
Sofía
Sofía le 26 Avr 2018
Commenté : krishna Chauhan le 26 Juin 2020
I'm trying to implement a CNN layer + a LSTM layer, but I have an error: "Network: Incompatible layer types". Is it not possible to implement this combination in MATLAB or am I just writing it not properly?
My code:
layers = [ ...
sequenceInputLayer(inputSize)
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
lstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer
];
Error:
Error using trainNetwork (line 154)
Invalid network.
Caused by:
Network: Incompatible layer types. The network contains layer types not supported with recurrent layers.
Detected recurrent layers:
layer 6 (LSTM)
Detected incompatible layers:
layer 2 (Convolution)
layer 3 (Batch Normalization)
layer 5 (Max Pooling)
Layer 2: Input size mismatch. Size of input to this layer is different from the expected input size.
Inputs to this layer:
from layer 1 (output size 500)

Réponse acceptée

Mona
Mona le 19 Sep 2018
As far as I know, no, you can't combine the two. You can train a CNN independently on your training data, then use the learned features as an input to your LSTM. However, learning and updating CNN weights while training an LSTM is unfortunately not possible.
  1 commentaire
krishna Chauhan
krishna Chauhan le 26 Juin 2020
Maam can i store the weights after say a number of epochs of CNN and then use those weights as input to LSTM?

Connectez-vous pour commenter.

Plus de réponses (4)

charu
charu le 9 Juil 2018
use bilstmLayer layer instead of lstm layer as in example
inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
sequenceInputLayer(inputSize)
bilstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]
  1 commentaire
Guillaume  JUBIEN
Guillaume JUBIEN le 3 Sep 2018
I have the same problem by using a bilstm Layer. The error message is :
if true
Error using trainNetwork (line 154)
Invalid network.
Error in test_spa_REG (line 168)
net = trainNetwork(XTR,TTR,Layers,options);
Caused by:
Network: Incompatible layer types. The network contains layer types not supported with recurrent layers.
Detected recurrent layers:
layer 9 (BiLSTM)
Detected incompatible layers:
layer 1 (Image Input)
layer 2 (Transposed Convolution)
layer 'temp1' (Convolution)
layer 5 (Average Pooling)
and 1 other layers.
Layer 10: Input size mismatch. Size of input to this layer is different from the expected input size.
Inputs to this layer:
from layer 9 (output size 20)
Is it possible to combine CNN with LSTM layer ?

Connectez-vous pour commenter.


Shounak Mitra
Shounak Mitra le 11 Juil 2019
Hello Everyone,
As of 19a, MATLAB supports workflows containing both CNN and LSTM layers.
Please check the link that contains an example showing the CNN+LSTM workflow --> https://www.mathworks.com/help/deeplearning/examples/classify-videos-using-deep-learning.html
  2 commentaires
Bhavna Rajasekaran
Bhavna Rajasekaran le 8 Nov 2019
Modifié(e) : Bhavna Rajasekaran le 8 Nov 2019
Is it possible to implement LSTM regression on an image (N-by-M array) such that the output is also a 2-dimesional array? Which means that the Predictors are an N-by-M array of sequences?
suraj sahoo
suraj sahoo le 11 Nov 2019
Is the CNN+lstm layer trainable?

Connectez-vous pour commenter.


sotiraw sotiroglou
sotiraw sotiroglou le 24 Mar 2019
Matlab 2019a is out. And it claims it can do this cnn - rnn combination.
Could someone give us an example?

sotiraw sotiroglou
sotiraw sotiroglou le 24 Mar 2019
Matlab 2019a is out there , and it claims it can do this rnn cnn combination.
I dont know the details, but i write this answer to encourage everyone with the same issue to search and maybe help with an example

Catégories

En savoir plus sur Image Data Workflows dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by