Significance of cross-validation in tuning weights in CNN
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi ML experts,
In MATLAB, the dataset is divided into training and validation data using splitEachLabel. The training data is used to train the CNN model and tune its weights in such a way that the error is minimal.
Can anyone please tell me the whether the inbuilt validation that happens during the CNN training has any role towards fine-tuning the filter weights? Does it make any difference or is it just to see how well our model is generalized before we do the actual testing?
0 commentaires
Réponse acceptée
Prajit T R
le 2 Mai 2018
Hi Venkat
The validation set is separate from the training set, and hence they do not influence the filter-weights.
The validation data is used to test the accuracy of the model and help you decide whether you have to change the hyper-parameters or not. Basically, it is a method to determine the effectiveness of the actual model before the actual testing takes place.
This is a recommended practice, because in its absence, the model would be highly sensitive to the training data.
Hope this helps.
Cheers.
3 commentaires
Greg Heath
le 3 Mai 2018
In particular, if the validation performance decreases for 6 (default but adjustable) continuous epochs, training will stop.
Hope this helps.
Greg
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!